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Abstract

Large-scale protein interaction networks (PINs) have typically been discerned using affinity purification followed by mass
spectrometry (AP/MS) and yeast two-hybrid (Y2H) techniques. It is generally recognized that Y2H screens detect direct
binary interactions while the AP/MS method captures co-complex associations; however, the latter technique is known to
yield prevalent false positives arising from a number of effects, including abundance. We describe a novel approach to
compute the propensity for two proteins to co-purify in an AP/MS data set, thereby allowing us to assess the detected level
of interaction specificity by analyzing the corresponding distribution of interaction scores. We find that two recent AP/MS
data sets of yeast contain enrichments of specific, or high-scoring, associations as compared to commensurate random
profiles, and that curated, direct physical interactions in two prominent data bases have consistently high scores. Our scored
interaction data sets are generally more comprehensive than those of previous studies when compared against four diverse,
high-quality reference sets. Furthermore, we find that our scored data sets are more enriched with curated, direct physical
associations than Y2H sets. A high-confidence protein interaction network (PIN) derived from the AP/MS data is revealed to
be highly modular, and we show that this topology is not the result of misrepresenting indirect associations as direct
interactions. In fact, we propose that the modularity in Y2H data sets may be underrepresented, as they contain indirect
associations that are significantly enriched with false negatives. The AP/MS PIN is also found to contain significant
assortative mixing; however, in line with a previous study we confirm that Y2H interaction data show weak
disassortativeness, thus revealing more clearly the distinctive natures of the interaction detection methods. We expect
that our scored yeast data sets are ideal for further biological discovery and that our scoring system will prove useful for
other AP/MS data sets.
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Introduction

Insights into the architectures and mechanisms of cellular

processes can be obtained by elucidation of genome-wide protein

interaction networks (PINs) that describe the physical associations

between the component proteins. Such maps, or interactomes, can

be exploited to enhance many types of biological discovery

including protein function prediction [1], inference of disease genes

[2], and identification of condition-specific response modules [3].

The yeast Saccharomyces cerevisiae has been routinely employed as a

model system for high-throughput studies and PINs have been

determined using a number of platforms including yeast two-hybrid

(Y2H) screens [4–6], affinity purification followed by mass

spectrometry (AP/MS) [7–9], and protein-fragment complementa-

tion assays (PCA) [10]. Each approach perceives interactions in a

distinct manner. The Y2H and PCA techniques detect direct binary

interactions, although the PCA approach does not rely upon

expression of a reporter gene as required in Y2H screens, while the

AP/MS techniques purify and identify protein complexes. The

reliability of each technique has been extensively debated in the

literature and comprehensive analyses have resulted in contrasting

conclusions [6,10–12]. However, it is generally accepted that any

measure of reliability is not absolute and largely dependent on the

nature of a pre-defined gold standard reference set.

An additional complexity arises in the analysis, or interpreta-

tion, of an AP/MS data set because there is no standard, or well-

defined, system to distinguish between the direct and indirect

interactions present in a purified complex. The only information

available for an individual purification is its composition: a tagged

bait protein and associated co-purified prey proteins. Furthermore,

the constituent proteins are identified by complex MS methods

and different platforms often yield varying compositions for

identical purifications [9,13]. Another concern is that the

compositions of the purifications are influenced by the protein

abundances [11,14,15] - proteins having a higher abundance are

more likely to be detected in more purifications and, therefore,

inferred to be involved in more interactions after tabulation of all

bait-prey pairs [15]. To address these issues, a number of

approaches for the analysis of AP/MS data sets have been

employed [8,9,16,17]. These techniques have the common goal of

discerning protein pairs that are appreciably co-purified relative to

some random background. While each method determines scores
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representing the likelihood of observing two proteins together, the

scores are computed using different procedures: Gavin et al.

calculate log-ratios of observed co-occurrences relative to expected

[8]; Krogan et al. utilize a combination of machine learning

algorithms [9]; Collins et al. implement a supervised algorithm

derived from Bayesian methods and optimized with empirically-

derived parameters [16]; and Hart et al. determine interaction

probabilities based on hypergeometric distributions [17]. The

qualities of the generated PINs have been found to be superior to

comparable data sets constructed by straightforward tabulations of

bait-prey interactions [9,16,17]. These evaluations were generally

deduced from direct comparisons against complexes manually

curated by the Munich Information Center on Protein Sequences

(MIPS) [18].

A recent study of high-throughput Y2H data sets explored the

characteristic strengths and distributions of functional (specific)

interactions and non-functional (non-specific or transient) interac-

tions in order to assess the extent to which the latter impedes the

formation of functional protein complexes [19]. It was conjectured

that the overall impact upon biochemical efficiencies had evolved

to a tolerable limit.

Motivated by the use of randomization techniques as a tool to

measure, or discover, enrichments of network motifs [20] and

connectivity correlations [21] in complex networks, we developed

a shuffling-based approach to assess the levels of interaction

specificity detected in AP/MS data sets. This system allows for the

computation of pair-wise protein co-occurrence significance (CS)

scores by comparing experimentally observed numbers with those

from randomized realizations. A CS score for two proteins

provides a statistical measure of their propensity to co-purify, or

interact, in an AP/MS data set. The approach requires no training

set or machine learning and is, therefore, applicable to any AP/

MS data set for any species regardless of whether any curated

information exists or not. It is found that these AP/MS data sets

contain significant enrichments of specific, or high-scoring,

associations. Additionally, we showed that high-quality direct

physical interactions curated in two prominent data bases have

significantly high CS scores. Therefore, while the AP/MS data sets

contain prevalent non-specific, or transient, associations, our

scoring analysis reveals that there is an underlying preference for

proteins to form selective, or discriminating, associations. Our

resultant scored interaction data sets were further assessed by

comparisons against four diverse, high-quality reference data sets,

each representing a unique manner of interaction detection,

association mechanism (direct or co-complex), and/or curation.

For most references, we found that the accuracies of our scored

interaction sets were manifestly higher than those of previous

studies. Additionally, our scored data sets are the only ones that

typically outperformed experimental Y2H interaction sets [4–6]. A

high-confidence PIN extracted from the AP/MS data of Gavin et

al. [8] was revealed to be free of abundance effects while those

derived from the data of Krogan et al. [9] contained weak

abundance biases. Therefore, it would appear that in high-quality

AP/MS data sets, interaction specificity is not coupled with

protein abundance. We note that the converse has recently been

found to be true of Y2H interaction data sets [19].

The high-confidence PIN derived from the data of Gavin et al.

[8] was shown to be highly modular, containing many localized

densely-connected regions, and strikingly different to a commen-

surate random network. We also demonstrated that the observed

high modularity is not a result of misinterpreting indirect

associations as direct interactions; rather, it is a result of direct

physical associations. Furthermore, we suggest that the modularity

in Y2H interaction data sets may be underrepresented as indirect

associations in these PINs are significantly enriched with

manually-curated physical interactions, i.e., they are likely false

negatives.

The high-confidence AP/MS PIN shows assortative mixing,

meaning that proteins having similar numbers of total interactions

prefer to interact with each other. A consequence of assortativity is

that high-degree proteins, or hubs, prefer to associate with each

other rather than with proteins having very small numbers of total

interactions. In agreement with a previous study [21], we find that

a consolidated Y2H PIN shows weak disassortative mixing while a

manually-curated set of high-confidence physical binary interac-

tions displays both, and in equal measure, assortative and

disassortative mixing. Therefore, high-quality AP/MS data appear

assortative while Y2H interaction data appear disassortative.

We expect that our scored yeast data sets are ideal for further

investigations involving biological discovery and that our proce-

dure will prove useful for the analysis of current and future AP/

MS data sets for a variety of species. We have compared our high-

quality AP/MS interaction data sets with those from Y2H screens

and perceived a number of novel insights regarding their

substances and network properties. Certainly, their topologies

are contrasting and must reflect their different methods of

interaction detection.

Materials and Methods

Calculation of Co-Occurrence Significance Scores
A CS score is a measure of the propensity for two proteins to be

identified together in purifications, either as bait-prey or prey-prey

combinations, relative to what would be expected by chance. They

were determined by comparing observed co-occurrences, the

number of times two proteins coincided in purifications, with those

from random simulations, where the latter were realized by

thoroughly shuffling, or exchanging, prey proteins (see below).

Therefore, our CS scores are derived from a purely numerical

procedure and, unlike previous systems of Krogan et al. [9] and

Collins et al. [16], require no training or reference data sets. Our

Author Summary

To understand and model cellular processes, we require
accurate descriptions of the interactions occurring be-
tween constituent proteins. Large-scale protein interaction
maps have typically been measured in two distinct ways.
The first detects direct pair-wise associations by testing
only two proteins at a time for an interaction. The second
detects large groups of proteins that have conglomerated
or purified together. With regard to the latter, it is difficult
to deduce which pairs of proteins are physically interacting
in the purification data, and interaction maps generally
appear random and unstructured. We have developed a
novel computational method to analyze the purification
data (from the second method) and identify which
proteins are directly interacting. The resultant protein
interaction map is highly modular, meaning that the
proteins organize themselves into localized, densely
connected regions that likely represent individually
functioning units. We also analyzed interaction maps of
the first method and propose that their lack of modularity
is a consequence of missing interactions that are
undetected for unclear reasons. This study provides
insights into the differences between the two interaction
detection methods as well as the nature of biological
organization.

Specificity in AP/MS Data
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CS scores are related to the socio-affinity indices of Gavin et al. [8]

and the probabilistic scoring scheme of Hart et al. [17] in that they

attempt to quantify the propensity for proteins to co-purify. The

socio-affinity scoring system [8] uses log-ratios of actual co-

occurrences relative to what would be expected based upon

protein purification frequencies, while the probabilistic scoring

scheme [17] calculates interaction scores based upon hypergeo-

metric distributions. However, both of these methods use expected

occurrence baselines determined from total numbers of protein

populations or interactions. As such, they do not account for the

great variations in bait affinities, i.e., the observation that some

bait proteins purify with very many preys while others purify with

very few.

Our procedure is distinct in that we determine numbers of

expected, or chance, co-occurrences via constrained randomized

simulations that preserve the individual purification structures, i.e.,

the number of preys. Although simplistic in its nature, our scoring

system is advantageous in several ways. First, the method

generates co-occurrence distributions for each protein pair and,

therefore, is able to gauge the statistical significances of the actual

experimentally observed co-occurrences. Second, while the

method penalizes proteins having higher frequencies of purifica-

tion, or abundances, it is able to uniformly distinguish between

specific and indiscriminate partnerships. In fact, the method is able

to identify instances of negative associations, or protein pairs that

have significantly under-represented observed co-occurrences

relative to that expected. Third, our randomized simulations

preserve the numbers of proteins in the individual purifications

and, consequently, utilize the experimentally discerned affinities of

the bait proteins. Last, as mentioned above, the procedure is

purely numerical and does not require a training or reference data

set. Therefore, it is completely devoid of any associated bias and is

applicable to any affinity purification data set, regardless of

whether any other high-confidence interaction sets exist or not.

Our interaction detection based on shuffling (IDBOS) proce-

dure is depicted in Figure 1A. For a given affinity purification data

set in which individual purifications are specified by a bait protein

and co-purifying prey proteins, we counted, for each unique

protein pair i and j, the total number of times they co-occurred in

the same purification. These observed co-occurrences, oij, do not

distinguish between bait-prey or prey-prey combinations. We then

constructed randomized, or shuffled, purification sets and

computed average shuffled co-occurrences, ōij, and associated

standard deviations, sij. The CS score for each protein pair was

then determined as the Z-score of the observed co-occurrences:

CSij~
oij{�ooij

sij

: ð1Þ

A shuffled purification set was constructed by shuffling, or

exchanging, pairs of prey proteins in a reference data set. A single

realization was accomplished by enumerating all prey proteins (in

all purifications) once and, for each prey protein, exchanging it

with another prey protein chosen at random. However, an

exchange was subject to the following constraints: (i) the two prey

proteins must occur in different purifications, and (ii) the exchange

cannot result in any purification having a protein that appears

twice, whether as bait or prey. This construction procedure

ensured that the shuffled purification sets were comparable to the

experimental data set, whereby the numbers of proteins in the

individual purifications were conserved and the global population

of each protein remained unchanged. We constructed a million

shuffled sets for each affinity purification data set analyzed here.

An initial shuffled set was derived directly from the experimental

purification data and subsequent shuffled sets were derived from

ones immediately previous.

When tabulating CS scores of protein pairs, or interactions,

derived from an experimental affinity purification data set, we

retained only those for observed co-occurrences greater than one,

i.e., oij.1. We deemed that statistical significances of protein

associations having co-occurrences less than two were not as

reliable as those having higher co-occurrences. However, we

stored mean shuffled co-occurrences and associated standard

deviations computed from the million shuffled sets for all possible

protein pairs. These were used to gauge the distribution of the

tabulated CS scores through the following steps. First, an

additional 105 shuffled sets were constructed in the same manner

as that described above. Second, for each shuffled set, we

determined the Z-scores for protein pairs having a shuffled co-

occurrence of greater than one:

Zn
ij~

cn
ij{�ooij

sij

, ð2Þ

where cn
ij (.1) is the co-occurrence of proteins i and j in the nth

shuffled set, and ōij and sij are the mean co-occurrences and

standard deviations, respectively, determined from the million

shuffled sets as in Equation (1). The total shuffled distribution,

comprising Z-scores accumulated from the 105 shuffled sets, was

used as a baseline to contrast the distribution of CS scores.

Evaluation of Interaction Data Sets
A standard way to evaluate an interaction data set is to contrast

it against a reference set that is considered to be high quality.

Commensurate with a previous approach [22], we have computed

accuracy versus coverage, where coverage is the number of

coinciding interactions in the evaluated and reference sets and

accuracy is the fraction of interactions in the evaluated set that are

coincident. When an interaction data set included confidence

scores, as in the sets derived in this work and in previous studies

[8,9,16,17], we ranked the interactions by decreasing score and

plotted accuracy versus coverage curves over a range of score

cutoffs.

We used four reference interaction data sets that are each

considered to be high quality in some way. However, they are also

individually distinct in that each represents a different style of

interaction measurement or curation. By evaluating, or contrast-

ing, interaction data sets against these references, we were able to

assess their substances from a number of viewpoints. Descriptions

of the reference sets follow:

(i) The binary gold standard (BGS) data set is a manually

curated set of high-confidence physical binary interactions

that represent direct protein associations, rather than indirect

ones, that may be incorporated in co-complex AP/MS data

sets [6]. This interaction set has been shown to have

considerable overlaps with high-throughput Y2H data sets.

(ii) A recent PCA strategy detects in vivo protein interactions

via fusions to enzyme fragments that, when reconstituted,

restores catalytic activity and, consequently, cell growth.

Therefore, this PCA approach does not depend upon the

expression of a reporter protein as required in Y2H screens

[10]. This PCA technique was applied on a genome-wide

scale for yeast and yielded many new, previously

undiscovered protein interactions.

(iii) The Saccharomyces Genome Database [23], (SGD:

http://downloads.yeastgenome.org/literature_curation/

Specificity in AP/MS Data
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Figure 1. Co-occurrence significance (CS) scores measure the interaction specificity for two proteins in AP/MS data. (A) Flow chart for
the computation of CS scores. (B) Illustration for protein pair Tub1:Tub2 showing an overrepresented co-occurrence in the purification data of Gavin
et al. [8]: 156 (observed) vs. 61.2 (s = 6.0) (random), with corresponding CS score of 15.8. (C) Illustration for protein pair Ssa1:Ssa2, showing an
underrepresented co-occurrence in the purification data of Gavin et al. [8]: 65 (observed) vs. 187.6 (s = 6.6) (random), with corresponding CS score of
218.7. (D) Total score distributions of experimental data sets and corresponding average distributions from 105 random (shuffled) realizations (see
Materials and Methods). (E) score distributions, in purification data of Gavin et al. [8], of selected curated interactions in MIPS [18] and SGD-Biogrid
(SBMC2) [23,24] repositories (see Materials and Methods) showing their measured high specificities.
doi:10.1371/journal.pcbi.1000515.g001

Specificity in AP/MS Data
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interaction_data.tab), which coincides with binary interac-

tions in the general repository of interaction data

(BioGRID) [24], was mined for ‘physical interactions’ that

were ‘manually-curated’ and reported at least twice. We

removed from this subset the PCA interaction data

described immediately above. The resulting data set is

referred to as SBMC2.

(iv) MIPS curated complexes were downloaded from the MIPS

database (ftp://ftpmips.gsf.de/yeast/catalogues/complexcat)

[18]. We only considered complexes identified in low-

throughput experiments, i.e., complexes listed under category

550, labeled as ‘Complexes by Systematic Analysis,’ were

excluded. Only pairs of proteins belonging to the same

complex were considered as interacting.

Y2H Interaction Data Sets
We also analyzed yeast PINs determined from a number of

high-throughput Y2H screens in order to contrast their contents

and network structures against the scored AP/MS data sets. The

Y2H data sets studied included the interaction sets of Yu et al. [6]

(CCSB-YI1), Ito et al. [4] (core subset), Uetz et al. [5], and a union

of these sets [6] (Y2H-union).

Network Analysis
The network structures of protein interaction data sets were

analyzed by computing a variety of graph-theoretical properties.

The clustering coefficient of a node (or protein) i is defined as the

fraction of possible edges between neighbors that are present,

where a neighbor of node i is any other node that shares an edge

with it [25]. The average clustering coefficient of a network was

determined by averaging the clustering coefficients of all nodes,

where nodes involved in only one interaction are defined here to

have a clustering coefficient of zero. The clustering coefficient of a

network is an indication of the network’s modularity, although it is

not a strict measure.

The nature of the connectivity in a network was assessed here by

determining interaction frequencies between pairs of degrees, i.e.,

for two degrees k1 and k2, we counted the total number of

interactions occurring between two nodes where one has degree k1

and the other has degree k2. Enrichments of interaction

frequencies between degrees were measured as Z-scores, where

actual numbers were compared to those of commensurate,

randomly-rewired, degree-preserving networks (103 realizations)

that were constructed using a similar procedure to that of Maslov

and Sneppen [21]. To verify our interpretation of the interaction

frequencies with regards to the connectivity in a network, we also

computed the degree-degree correlation coefficient [26,27], which

quantifies the level of interaction between proteins of similar

degrees:

r~
Sk1k2T{Sk1TSk2T

s2
k

ð3Þ

where the averaged quantities are determined over all interactions

and the denominator is the variance of the node degree k. When

nodes of similar degrees prefer to interact in a network, i.e., their

interaction frequencies are significantly enriched resulting in a

positive degree-degree correlation coefficient (r.0), then the

network connectivity is said to be assortative – nodes of high

degree (hubs) prefer to interact with each other while low-degree

nodes avoid interacting with hubs. Conversely, when nodes of

diverse degrees prefer to interact in a network, leading to a

negative correlation coefficient (r,0), then the connectivity is said

to be disassortative – hubs avoid each other and generally prefer to

interact with low-degree proteins.

Results

Computation and Analysis of Co-Occurrence Significance
Scores

We applied our IDBOS scoring procedure (Figure 1A and see

Materials and Methods) to the yeast AP/MS experimental data

sets of Gavin et al. [8] and Krogan et al. [9]. Gavin et al. used

matrix-assisted laser desorption/ionization-time of flight (MALDI-

TOF) MS to identify proteins present in the purification while

Krogan et al. used two MS techniques for protein identifications:

MALDI-TOF and liquid chromatography tandem MS (LCMS).

Although previous studies have merged the MALDI-TOF and

LCMS data sets of Krogan et al., we chose to keep them separate

initially. Therefore, we computed three sets of CS scores for each

of the Gavin, Krogan (MALDI-TOF), and Krogan (LCMS) AP/

MS data sets that formed our IDBOS-Gavin, IDBOS-Krogan

(MALDI), and IDBOS-Krogan (LCMS) scored interaction data

sets, respectively (Tables S1, S2, S3). Only CS scores for protein

pairs having total co-occurrences greater than one were retained.

As discussed above (see Materials and Methods), the CS score for a

protein pair represents the propensity for them to co-purify (or

associate) relative to a random background derived from

simulations that shuffled prey proteins.

We illustrate the approach for the two proteins Tub1 (YML085C)

and Tub2 (YFL037W) that are known to form alpha and beta

subunits of heterodimers that polymerize to form microtubules.

These cytoskeletal filaments participate in a variety of cellular

functions, including structural support [28]. The significance of the

Tub1–Tub2 associations in the AP/MS data set of Gavin et al., i.e.,

the CS score in the IDBOS-Gavin data set, is shown in Figure 1B.

The random profile has a mean co-occurrence of 61.2 and a

standard deviation of 6.0, indicating that the observed co-

occurrence, or frequency of co-purification, at 156 is statistically

significant with a Z-score of 15.8. Therefore, we would consider that

Tub1 and Tub2 have a high affinity of association. In contrast,

previous analyses of the Gavin et al. data set have not concluded

that these two proteins have a significant association [8,16]. In fact,

only the study of Hart et al. [17] infers a significant association for

these two proteins; however, some of their scores are computed by

multiplying P-values across data sets. Curiously, the interaction

between Tub1 and Tub2 has not been identified in any of the high-

throughput Y2H or PCA screens [4–6,10].

Perhaps a more intriguing illustration of our approach is the

discerned highly-specific non-interaction, or perceived repulsive

association, between the two proteins Ssa1 (YAL005C) and Ssa2

(YLL024C). These proteins have an experimentally observed co-

occurrence of 65 in the AP/MS data set of Gavin et al. while the

random profile has a mean-co-occurrence of 187.6 and a standard

deviation of 6.6; therefore, the resultant CS score is considerably

negative at 218.7 (Figure 1C). This score implies that not only do

these proteins not interact; they would rather not associate, even

by chance. The reasons for this inferred repulsive association are

not immediately clear. Ssa1 and Ssa2 are cytosolic members of the

heat shock protein 70 family that have a number of functions,

including serving as molecular chaperones and assisting in protein

folding [29]. A possible explanation for their avoidance may be to

enhance their protein translocation efficiencies – if they were to

come together, even by chance, their individual abilities to

function as chaperones may be lost. It is also possible that Ssa1 and

Ssa2 interact with diverse sets of proteins, i.e., Ssa1 may interact

Specificity in AP/MS Data
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strongly with a particular set of proteins whereas Ssa2 may interact

with a different group. While there has been much focus recently

on elucidating the high-confidence or steadfast interactions in

experimental interaction data sets, little effort has been made to

identify proteins that strongly avoid each other. It remains to be

seen whether this latter type of non-interaction amongst proteins is

also fundamental for normal cellular function.

Although the random co-occurrence profiles for the Tub1–

Tub2 and Ssa1–Ssa2 cases discussed above appear to be normally

distributed (Figures 1B and 1C), it should be noted that as the

average random co-occurrence for two proteins approaches zero,

the corresponding random co-occurrence profile will become less

normal and skewed to the right. Therefore, one may query the

reliability, or appropriateness, of CS scores in such instances. We

have somewhat diminished this concern by only scoring protein

associations that have an observed co-occurrence of two or more

(see Materials and Methods). However, we recognize that in some

instances random co-occurrence profiles will deviate from

normality. Nonetheless, as a starting point for more advanced

(and possibly computationally inefficient) approaches, we analyzed

the performance of the current procedure.

The number of potential protein pairs in an AP/MS data set is

very large, in the millions for the three analyzed in this work. As

such, it is possible for pairs to have significant scores for their co-

occurrences purely by chance. To investigate this likelihood we

contrasted the distributions of the CS scores in the three IDBOS

data sets against shuffled, or random, score distributions

accumulated from 105 commensurate shuffled sets (see Materials

and Methods). We found that the experimental distributions have

longer tails in the high-score region (Figure 1D), indicating that

they are enriched with discriminating protein associations. These

results are encouraging in that they reveal, in a unique way,

perceptible levels of specificity in the associations detected by the

AP/MS experiments. Furthermore, all three random distributions

are nearly identical, indicating that we are using consistent

random baselines in our approach. We note that of the three

experimental distributions, the IDBOS-Gavin data set has the

most pronounced enrichment in the high-score region, possibly

suggesting differences in the qualities of the experimental data.

This issue is discussed in more detail later.

Careful examinations of the randomized Z-score distributions

indicate that they deviate slightly from normality in that they are

slightly skewed to the right. This is most likely a result of only

scoring interactions that have a co-occurrence of two or greater in

any of the experimental or the additional 105 randomized data

sets, i.e., for a given data set, whether experimental or one of the

additional randomized, Z-scores were only determined for protein

pairs that had co-occurrences of two or greater in that data set (see

Materials and Methods). Therefore, the experimental and random

score distributions are slightly skewed to the right. Even so, when

contrasted against the random score distributions, the experimen-

tal distributions are noticeably enriched in the high-score region.

As a first step to analyzing the reliability of our scoring scheme,

we gauged the scored interactions in the IDBOS-Gavin data set by

mapping them on to curated interactions that represent high-

confidence associations identified in small-scale, or low-through-

put, experiments. For a given curated data set, we tabulated their

IDBOS-Gavin scores, i.e., we accumulated IDBOS-Gavin scores

for interactions that occurred in both the curated data set and our

IDBOS-Gavin scored set. If the curated set contains steadfast

interactions and our procedure is able to identify them as being

statistically over-represented in the AP/MS data set of Gavin et

al., then the accumulated score distribution should reflect this.

Indeed, we discovered that interactions in two prominent curated

sets have distinctively high CS scores in the data set of Gavin et al.

(Figure 1E). The first curated set is a collection of interactions

between proteins occurring in the same MIPS annotated complex

(see Materials and Methods) and this data shows two peaks near

CS scores of five and twenty. The distribution about five may be

due to the nature of the interaction tabulation. We inferred that all

proteins occurring in the same MIPS complex interact; however,

most likely many of these pairs do not have a direct physical

association. The second curated set is a collection of manually-

curated physical interactions reported twice or more in the SGD-

BioGRID repositories (see Materials and Methods). This set of

interactions (SMBC2) has a CS score distribution that is also well

separated from the total experimental and shuffled distributions

and, like the MIPS data, exhibits a peak near twenty. Therefore,

we concluded that our IDBOS scoring scheme was able to reliably

distinguish between the specific and non-specific associations

detected in the AP/MS experiments.

Evaluation of the IDBOS Scoring Procedure
To further evaluate the IDBOS procedure we compared its

performance against the previously described scoring systems of

Collins et al. [16] and Hart et al. [17] by contrasting each against a

variety of reference interaction sets. Both systems of Collins et al. and

Hart et al. have been shown [16,17] to out-perform the high-

confidence PINs derived in the original AP/MS studies [8,9]. Collins

et al. provide purification enrichment (PE) scores computed

independently for the AP/MS data sets of Gavin et al. [8] and

Krogan et al. [9]; however, they analyze the latter by combining the

original MALDI-TOF and LCMS purifications into one data set.

Hart et al. [17] only provide scores determined by multiplying

individual results across the Gavin et al. [8], Krogan et al. [9], and

Ho et al. [7] data sets. Since consolidated data sets generally show

greater accuracy than individual ones [16,17], we felt that

comparison of IDBOS-Gavin and Collins-Gavin interaction data

against the combined data of Hart et al. [17] advantaged the latter.

Accuracy versus coverage curves using four diverse reference sets are

shown in Figures 2A–D (see Materials and Methods for fuller

descriptions of the references and evaluation procedure). The first

two references represent high-quality direct physical interactions that

were either curated binary gold standard (BGS) [6] (Figure 2A) or

detected in a large-scale experiment (PCA) [10] (Figure 2B). In each

instance, we found that IDBOS-Gavin scored data performed better

than the Collins-Gavin and Hart data sets. Similar results were

obtained for the third reference (Figure 2C), which consists of

manually-curated physical interactions detected in small-scale

experiments (SBMC2) [23,24]. These results suggest that our

method was more adept at discerning the direct associations from

the indirect that are present in the purifications. The fourth reference

is a collection of interactions between proteins co-occurring in MIPS

curated complexes identified in low-throughput experiments. All

three scoring schemes show very high overlaps (Figure 2D) and this is

probably not unexpected. By assuming that all proteins comprising a

complex are interacting, we are not distinguishing between the direct

and indirect associations. However, the results are encouraging for

the IDBOS and Hart et al. [17] approaches as neither relies upon

external data, while the method of Collins et al. [16] employed

empirical parameters that were optimized using MIPS complexes.

Very similar results were observed when analyzing the IDBOS- and

Collins-scored data of Krogan et al. (Figure S1).

While our technique for the analysis of AP/MS data sets

compares favorably with previous methods, it is of interest to

contrast our scored interaction data sets against those from high-

throughput Y2H screens [4–6]. It has recently been surmised that

AP/MS methods are best at detecting co-complex associations
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while Y2H screens are better at detecting binary interactions when

compared against the BGS set [6]. When using this BGS set as a

reference, we found that the Y2H interaction sets show better

relative accuracies than the Collins-Gavin and Hart data sets.

However, our IDBOS-Gavin data set performed at a slightly

higher level than the Y2H interaction sets (Figure 2A), although

the differences are small. Nonetheless, the result further affirmed

that the IDBOS procedure discerned direct physical associations

in the AP/MS purification data. The IDBOS-Gavin set performed

markedly better than the Y2H data sets for the other references

(Figures 2B–D). The results are not unexpected when using the

MIPS reference, but noteworthy for the others as they represent

distinct types of high-quality direct binary interactions. Although

the IDBOS-Krogan data is of slightly poorer quality than the

IDBOS-Gavin data, the comparisons against the Y2H interaction

sets yielded comparable results (Figure S1).

High-Confidence AP/MS PINs
We determined score cutoffs for each IDBOS data set by

comparisons of their experimental and random score distributions

(see Materials and Methods) shown in Figure 1D. For a given score

threshold f, we can compute the fractions of protein pairs in the

commensurate random and experimental distributions that have a

higher score as fR(Z.f) and fE(CS.f), respectively. Therefore, we

approximated the false-discovery rate as the ratio of these

fractions, i.e., PFP(f) = fR/fE. We used a false-discovery rate of

5% to compute score cutoffs for the IDBOS-Gavin (f0.05 = 5.95),

IDBOS-Krogan (MALDI) (f0.05 = 8.26), and IDBOS-Krogan

(LCMS) (f0.05 = 12.92) data sets. Corresponding high-confidence

PINs were compiled by including only interactions having higher

CS scores than the respective cutoffs. The number of proteins/

interactions in the IDBOS-Gavin, IDBOS-Krogan (MALDI), and

IDBOS-Krogan (LCMS) PINs were 1274/7879, 1061/3398, and

1719/3640, respectively. The IDBOS-Gavin PIN has the largest

number of interactions of the three, which demonstrated the

superior enrichment of high CS scores in the AP/MS data set of

Gavin et al. [8]. The IDBOS-Krogan (LCMS) PIN is the sparsest,

as judged by the average number of interactions, or degree, of the

constituent proteins, implying that the LCMS data of Krogan et

al. [9] has the lowest enrichment of significant association scores.

Certainly, these observations are mirrored by the order of the

computed score cutoffs given above.

From the results presented so far, one might conclude that of the

three AP/MS data sets investigated here, the set of Gavin et al. [8]

Figure 2. Evaluation of the IDBOS scoring scheme. Coverage versus accuracy data (see Materials and Methods) comparing the scoring schemes
of IDBOS (this work) and Collins et al. [16], when applied to the purification data of Gavin et al. [8]. Four diverse reference interaction data sets were
used: (A) BGS; (B) PCA; (C) SBMC2; and (D) MIPS. See Materials and Methods for full descriptions of these references. Also shown is the scored data of
Hart et al. [17] (determined by multiplying individual results across the Gavin et al. [8], Krogan et al. [9], and Ho et al. [7] AP/MS data sets) and
evaluations for Y2H data sets of Yu et al. [6] (CCSB-YI1), Ito et al. [4] (core subset), Uetz et al. [5], and a union of these data sets [6] (Y2H-union).
doi:10.1371/journal.pcbi.1000515.g002
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showed the highest specificity of protein associations: (i) it had the

most considerable enrichment of high CS scores (Figure 1D) and,

consequently, it yielded the most interactions from use of a 5%

false-discovery-rate filter; and (ii) the IDBOS-Gavin and Collins-

Gavin scored data sets generally showed superior performance

over the comparable scored sets derived from the data of Krogan

et al. [9] (Figure 2 and Figure S1). We investigated this premise

further by analysis of protein abundance trends in the high-

confidence PINs derived in this work and by Collins et al. [16]. It

has previously been demonstrated that proteins having higher

cellular abundances tend to be involved in more interactions, or

have higher degrees, in AP/MS experimental data sets; such an

abundance-degree relationship is not present in PINs determined

from Y2H screens [11,14,15]. Abundance effects were assessed

using an approach similar to that of von Merring et al. [11],

whereby proteins in a PIN were sorted into classes according to

their abundances. We utilized the recent abundance measure-

ments of Newman et al. determined from flow cytometry [30];

however, similar results were observed when using abundances

measured by western blot analysis [31] (data not shown). We

found that the IDBOS-Gavin PIN is free of any abundance effects

while the IDBOS-Krogan (LCMS) PIN shows a weak bias in the

high-abundance/high-degree region (Figure 3A). Equivalent

results were obtained when we analyzed the high-confidence

networks of Collins et al. [16] (Figure 3B), which were each

constructed using the score cutoff of 3.19 used for their merged

data. Like our IDBOS-Gavin PIN, the high-confidence Collins-

Gavin network shows no significant abundance effects. We could

only construct a merged Collins-Krogan (MALDI+LCMS) PIN

from their available data and this network shows the largest high-

abundance/high-degree bias.

The observation that only the high-confidence PINs derived

from the results of Gavin et al. [8] are free of any abundance bias

is consequential. This finding, together with those discussed

earlier, imply that the AP/MS experiment of Gavin et al. [8]

detected more specific protein associations than that of Krogan et

al. [9]. For the latter study, the score-enrichment and abundance

analyses described above indicate that the MALDI-TOF method

identified more specific associations than the LCMS technique.

However, we do not wish to make firm conclusions regarding the

two identification methods. There are other important factors that

we have not considered, not least that the LCMS method is

purported to be more successful in identifying small and lower-

abundance proteins [9,13]. Such an advantage might certainly

lead to a perceived lower-specificity, at least by the analysis

methods used here, simply because more unique proteins may be

detected.

Architecture of High-Confidence AP/MS PINs
Although the primary focus of the present article is the

description and analysis of the IDBOS scoring procedure for

AP/MS data, it is useful to examine the network structures of the

derived high-confidence PINs. Since our evaluations suggest, but

certainly not affirm, that the AP/MS data of Gavin et al. [8]

contains more specific protein associations than the data sets of

Krogan et al. [9], we opt to present network analyses of the high-

confidence IDBOS-Gavin PIN described above; however, the

IDBOS-Krogan PINs show very similar characteristics. The

IDBOS-Gavin PIN is depicted in Figure 4A and its modular

nature is immediately apparent. We want to make it clear that in

this work we have strictly not quantified the levels of modularity in

any network. Rather, we have inferred modular natures, or lack of,

via a number of graph-theoretical analyses and illustrations. While

a refined two-dimensional portrayal of a network can reveal the

inherent modularity, it often also disperses modules that are

incorporated in the giant component. Nonetheless, it is clear from

Figure 4A that the IDBOS-Gavin PIN contains many localized

highly-clustered regions as well as numerous disjoined complexes.

The IDBOS-Gavin PIN is strikingly different to a commensurate

randomly-rewired, degree-preserving network (constructed using a

similar procedure to that of Maslov and Sneppen [21]), which

shows no modularity or disjoined regions (Figure 4B). Interaction

data sets generated from the raw AP/MS data of Gavin et al. [8],

using the spoke (bait-prey tabulation) and matrix (bait-prey and

prey-prey tabulation) models, appear very similar to the random in

that they exhibit very little modularity and appear uniformly dense

Figure 3. Abundance effects in high-confidence PINs derived from AP/MS data. The association between protein degree and abundance in
high-confidence PINs derived by (A) the IDBOS procedure (this work) and (B) Collins et al. [16], from AP/MS data sets of Gavin et al. [8] and Krogan et
al. [9]. Proteins were sorted by increasing abundance, as measured by Newman et al. [30], into 11 classes. Undetectable low-abundant proteins
comprised class 0 while the remaining proteins were sorted into 10 equally-sized classes. The sizes of classes 0/classes 1–10 were as follows: 231/92
for the IDBOS-Gavin PIN; 265/68 for the IDBOS-Krogan (MALDI) PIN; 424/101 for the IDBOS-Krogan (LCMS) PIN; 238/87 for the Collins-Gavin PIN; and
384/111 for the Collins-Krogan (MALDI+LCMS) PIN. For each class, we determined the significance of the average degree, as a Z-score, compared to
the network average and standard deviation determined from equivalently-sized randomly-compiled pools (104 realizations). The enclosed
rectangular areas represent |Z|,2.6 (P.0.05 after multiple-test correction).
doi:10.1371/journal.pcbi.1000515.g003

Specificity in AP/MS Data

PLoS Computational Biology | www.ploscompbiol.org 8 September 2009 | Volume 5 | Issue 9 | e1000515



(Figure S2). While the number of disjoined components in a

network, relative to that of a commensurate random network, is

not a strict measure of modularity, it does provide insight into the

level of interaction localization. The IDBOS-Gavin PIN has 90

disjoined components compared to the expected 1.95 (SD = 0.8)

for the random equivalent based on 1000 realizations (Figure 4C).

This substantial 46-fold increase clearly indicates preferential

protein complexation. In contrast, the Y2H interaction networks

show no significant enrichments of disjoined components with

observed/expected ratios of close to one (Figure 4C). Therefore,

the IDBOS-Gavin PIN shows a much higher level of selective

complexation than the Y2H data sets. While this is to be expected

Figure 4. The high-confidence IDBOS-Gavin PIN is highly modular. Depictions of (A) the high-confidence IDBOS-Gavin PIN and (B) a
commensurate, degree-preserving random network. (C) Enrichments of numbers of disjoined parts in the IDBOS-Gavin PIN and Y2H data sets of Yu et
al. [6] (CCSB-YI1), Ito et al. [4] (core subset), Uetz et al. [5], and a union of these data sets [6] (Y2H-union). Expected values and standard deviations (SD)
were computed from 1000 realizations of commensurate, degree-preserving random networks. (D) Clustering coefficients of the IDBOS-Gavin PIN and
experimental Y2H data sets. The inset shows average clustering coefficients by degree for the IDBOS-Gavin PIN and two realizations of a
commensurate, degree-preserving random network. (E) Coverage versus accuracy data for the weakest links in the IDBOS-Gavin PIN using the BGS
reference set (see Materials and Methods). Also shown are coverage-accuracy values for the Y2H data sets.
doi:10.1371/journal.pcbi.1000515.g004
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due to the nature of the AP/MS method, the results imply that the

IDBOS scoring procedure was able to identify individual

complexes occurring in the purification data. Another indicator

of the level of modularity in a network is the average clustering

coefficient of a network which is literally a measure of edge

clustering around the nodes or proteins [25]. We averaged

clustering coefficients over proteins in a PIN having degrees

greater than one. The IDBOS-Gavin PIN has an average

clustering coefficient of 0.74 and this is much higher than those

for the Y2H interaction data sets (Figure 4D). This 19-fold ratio of

observed relative to commensurate random suggests a significant

enrichment of clustering. Of the Y2H interaction sets, the Uetz et

al. [5] data set has the highest ratio of observed/expected of 14

while the core PIN of Ito et al. [4] has the lowest of approximately

one. Therefore, the Y2H PIN of Uetz et al. [5] also shows a

significant clustering enrichment. Figure 4D shows the average

clustering coefficients of proteins by degree for the IDBOS-Gavin

PIN and two realizations of a commensurate random network. It is

clear that the clustering tendency of a protein in the IDBOS-

Gavin PIN is essentially independent of its degree, only dropping

slightly at very high degrees, and is substantially higher than the

random. The clustering profile in the IDBOS-Gavin PIN is

manifestly different from the power-law profile of hierarchical

networks previously proposed to model biological networks having

power-law-like degree distributions [32,33]. Although the IDBOS-

Gavin PIN is also characterized by a power-law-like degree

distribution (see High-Confidence AP/MS PINs Show Assortative

Mixing), it is clear that this network does not have a hierarchical

structure (Figures 4A and D) and that the IDBOS scoring

procedure is discerning an inherent modular nature for the

preferential protein interactions in the AP/MS purifications.

Direct Versus Indirect Associations in AP/MS and Y2H
PINs

It has previously been concluded that, generally, Y2H

interaction sets consist of high-quality direct binary associations

while AP/MS data sets contain complexes composed of direct and

preponderant indirect associations [6]. Therefore, it is possible

that our scoring system assigns artificially high scores to pairs of

proteins occurring in the same complex, but that are not directly

physically interacting. We assessed the scope of these misrepre-

sented indirect associations in our high-confidence IDBOS-Gavin

PIN by contrasting, via accuracy versus coverage curves, the

weakest links in the modules against the manually curated BGS set

of high-confidence physical binary interactions that represent

direct protein associations rather than indirect ones [6]. Modules,

or highly interconnected regions in a network, can be considered

to contain enrichments of triangles in which three nodes are

completely interconnected. The IDBOS-Gavin PIN contains

43,054 triangles, 17 times more than that in a commensurate

random network (averaged over 1000 realizations). The weakest

link in a triangle is the interaction having the lowest CS score. As

such, the weakest links in the IDBOS-Gavin PIN are good

candidates for possible indirect associations. We compiled all the

weakest links, and their corresponding CS scores, in the IDBOS-

Gavin PIN and evaluated this interaction subset against the BGS

set (Figure 4E). While this weakest-link IDBOS-Gavin set performs

slightly worse than the complete IDBOS-Gavin scored data

(Figure 2A), it is of very similar quality to the Y2H data sets

(Figure 4E). Therefore, the weakest links in the IDBOS-Gavin PIN

most likely represent direct interactions, indicating that the

observed modularity is not an artifact arising from misrepresenting

indirect associations as direct interactions.

We next turned our attention to the undetected interactions in

the experiments. For Y2H data sets, they denote protein pairs that

did not restore a transcription factor activating expression of a

reporter gene, while in our analysis of AP/MS data they represent

non-specific, or low-scoring, protein associations in the purifica-

tions. A false negative is here defined as an undetected interaction

that is curated as a direct physical interaction in a reference set.

The BGS and SBMC2 curated data sets were considered to be

appropriate references (see Materials and Methods). Good

candidates for false negatives are undetected associations between

two proteins who share an interaction partner, i.e., indirect

associations arising from cases of A–C–B, where two proteins A

and B are not found to associate but both are evinced to interact

with protein C. The fraction of these indirect associations that are

false negatives (actual) was compared with the fraction of all

undetected interactions that are false negatives (expected).

Enrichments were computed as ratios of actual/expected.

Enrichments for the IDBOS-Gavin and Y2H PINs were greater

than three (Figures 5A–B); therefore, the results suggest that in all

these data sets indirect associations are more likely to be false

negatives, at least as categorized by the BGS and SMBC2

references. The enrichment is least for the IDBOS-Gavin PIN but

substantial for the Y2H interaction sets with the data of Uetz et al.

[5] showing the largest proportion of possible missed interaction

detections.

These findings imply that the high modularity observed in the

IDBOS-Gavin PIN was not a result of misrepresenting indirect

associations as direct interactions and, in fact, indicate that the

modularity would be enhanced if curated high-quality binary

interaction data was included. The results affirm that the IDBOS

scoring procedure is able to adequately distinguish between the

direct and indirect associations in the purification data. We also

found that the modularity in Y2H interaction data sets may be

underrepresented, particularly the data of Uetz et al. [5], as the

constituent indirect associations were significantly enriched with

false negatives. It must be stressed that these inferences were

largely based on the assumption that the BGS [6] and SBMC2

[24] data sets comprise veritable direct binary physical protein

interactions. We note that the BGS data has recently been utilized

to demonstrate that the qualities of high-throughput Y2H data sets

are substantially better than those of high-throughput AP/MS

data sets [6].

High-Confidence AP/MS PINs Show Assortative Mixing
Having established that the observed modularity in the high-

confidence IDBOS-Gavin PIN is likely a result of direct

interactions, we probed the network features further. As noted

above, the IDBOS-Gavin PIN has a power-law-like degree

distribution that is substantially different from that of a completely

random Erdös-Rényi graph having the same number of nodes and

edges (Figure 6A). The observed non-random degree distribution

is not surprising, but welcome, since it is well established that many

real-world networks, including biological, have power-law-like

degree distributions [26,33,34]. With respect to biological

networks and PINs, previous studies have found that they are

disassortative [21,26], meaning that interactions tend to occur

between two nodes, or proteins, that have very different degrees,

i.e., hubs, or proteins having very many interactions, prefer to

connect to proteins having very few interactions. A consequence of

disassortativeness is that hubs avoid interacting with each other

and prefer to spread out in a PIN rather than clump together

centrally. We investigated the connectivity in the IDBOS-Gavin

PIN by computing interaction frequencies for pairs of degrees.

The significances of the frequencies, computed as Z-scores
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illustrated in Figure 6B, were evaluated by comparison against

frequency distributions resulting from 1000 realizations of

commensurate, degree-preserving random networks. The diagonal

nature of the degree-degree frequency distribution is immediately

apparent. High-degree proteins prefer to interact with each other

while low-degree proteins avoid interacting with hubs. In fact, the

IDBOS-Gavin PIN appears highly assortative - interactions tend

to occur between proteins having very similar degrees. To confirm

this property, we evaluated the degree-degree correlation

coefficient (21#r#1), whereby a negative value indicates

disassortativeness and a positive value signifies assortativeness

[26,27]. As expected, the IDBOS-Gavin PIN has a considerably

positive correlation coefficient of 0.62, confirming its inherent

assortative nature. For comparison, a commensurate degree-

preserving random network has an average correlation coefficient

of 20.02 (SD = 0.01) for 1000 realizations; this value is slightly

negative due to the exclusion of self interactions. The previous

finding of disassortativity [21] was based on a study of the Y2H

interaction data of Ito et al. [4]. Significances of degree-degree

interaction frequencies for the Y2H-union data set [6] are shown

in Figure 6C and it is clear that this network contains weak

disassortative mixing (r = 20.08) - hubs generally prefer to interact

with low-degree proteins and there is only a slight diagonal

propensity. Therefore, we confirm the previous finding [21] that

Y2H interaction data appears disassortative while high-quality

AP/MS interaction data constitutes significant assortative mixing.

These findings are in line with the observations noted above,

whereby the modularity in the IDBOS-Gavin PIN is likely due to

direct interactions while the modularity in Y2H data sets may be

underestimated due to missed interaction detections. This

inference is reflected in the significances of the degree-degree

interaction frequencies in the manually-curated BGS set [6] shown

in Figure 6D, where significant simultaneous disassortative and

assortative elements result in an ‘X’ pattern. In fact, the degree-

degree correlation coefficient for this interaction data was

essentially zero (r = 0.004), indicating that the disassortative and

assortative mixing effects are nearly identical.

Discussion

We have developed a statistical approach to measure the affinity

for two proteins to co-purify in an AP/MS data set. The method is

not based on machine-learning techniques and, therefore, requires

no external reference data set. As such, it is applicable to any

current and future AP/MS data set regardless of how much

curated information is available. Our scoring mechanism is

distinct from previous approaches in that it utilizes random

baselines derived by thoroughly shuffling, or exchanging, prey

proteins. Therefore, the approach preserves the numbers of

proteins in the individual purifications and takes into account the

experimentally discerned affinities of the bait proteins.

The procedure was applied to two recent yeast AP/MS studies

[8,9] and it was shown that the derived scored interaction data sets

were enriched with specific, or discriminating, protein associations

as compared to random profiles. It was also demonstrated that

known high-quality direct physical interactions had significantly

high scores. The scored interaction data sets were further

evaluated by comparisons against four diverse high-quality

reference data sets and it was generally found that our scoring

system performed superior to previous scoring schemes [16,17].

Additionally, our scored interaction data sets were the only ones

that almost consistently outperformed experimental Y2H interac-

tion sets [4–6], including when contrasted against the curated BGS

set which represents high-confidence direct physical binary

associations [6].

Although it is generally accepted that AP/MS experiments detect

preponderant non-specific (transient) protein interactions, our

analyses reveal an underlying specificity for protein associations,

i.e., a subtle preference for proteins to form functional interactions.

While ours and previous studies [8,9,16,17] have implied such a

specificity by showing that high-scoring associations generally

appear in manually curated reference sets, we have further

demonstrated that the experimental score distributions are distinct

from commensurate random profiles. The random profiles for three

different AP/MS data sets are almost identical revealing a

Figure 5. Indirect associations in the IDBOS-Gavin PIN and Y2H data sets are enriched with false negatives. An indirect association
occurs when two non-interacting proteins share an interaction partner, e.g., A and B represent an indirect association in the case of A–C–B. Indirect
associations form a subset of all non-interactions. A false negative is defined as a non-interaction that is curated as a direct physical interaction in a
reference set: (A) BGS, (B) SBMC2 (see Materials and Methods). The fraction of indirect associations that are false negatives (actual) was compared with
the fraction of all non-interactions that are false negatives (expected). Enrichments were computed as ratios of actual/expected.
doi:10.1371/journal.pcbi.1000515.g005
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consistency in our scoring approach. Additionally, the experimental

score distributions have enhanced tails in the high-score region,

thereby demonstrating enrichments of interaction specificity in each

experimental data set. The interplay between non-functional and

functional interactions was recently explored using Y2H interaction

data and it was conjectured that the impact of non-functional

interactions upon biochemical efficiencies of specific complexes was

near the tolerable limit [19]. Since our analyses of AP/MS data

provide specificity profiles, we hope that our scored interaction data

sets may reveal further insights into the non-functional/functional

interaction dynamics occurring in the cell.

From the scored data sets we derived, using 5% false-discovery

rates, corresponding high-confidence PINs. We selected that

derived from the AP/MS data of Gavin et al. [8] for further

network study after inferring that it contained the highest

specificity. We stress that our determination of specificity in the

AP/MS data sets was based on our score-enrichment and

abundance analyses and did not consider other mitigating factors.

Therefore, we are reluctant to make firm conclusions regarding

the data sets of Gavin et al. [8] and Krogan et al. [9]. Our high-

confidence PIN derived from the data of Gavin et al. [8] was

shown to be highly modular and strikingly distinct to a

commensurate random degree-preserving network. Additionally,

we demonstrated that the high modularity was not a consequence

of misinterpreting indirect associations as direct interactions. We

propose that the lack of modularity in Y2H PINs is the result of

enrichments of false negatives due to undetected interactions

between indirectly associating proteins.

Figure 6. High-confidence AP/MS interaction data shows assortative mixing while Y2H interaction data shows disassortative
mixing. (A) Power-law-like degree distribution of the IDBOS-Gavin PIN and for a commensurate completely random Erdös-Rényi (ER) graph.
Enrichments (Z-scores) of interaction frequencies, relative to commensurate, degree-preserving random networks (104 realizations) between pairs of
degrees in the (B) IDBOS-Gavin PIN, (C) Y2H-union data set [6], and (D) BGS curated interaction set (see Materials and Methods). Most red indicates
Z$5 (overrepresented) and most green indicates Z#25 (underrepresented).
doi:10.1371/journal.pcbi.1000515.g006
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In line with these findings, the network structures of our high-

quality AP/MS and Y2H PINs were found to be significantly

different - our AP/MS PIN shows strong assortative mixing while

Y2H PINs show weak disassortative mixing. A consequence of

assortative mixing in AP/MS data sets is that high-degree proteins

(hubs) prefer to interact with other high-degree proteins; however,

the disassortative mixing in Y2H PINs means that hub proteins

avoid each other and instead connect to low-degree proteins. As a

result of the network connectivity differences, our high-quality AP/

MS data set appears more modular than Y2H interaction sets.

However, the curated BGS set shows both, and in equal measure,

assortative and disassortative mixing, suggesting that both elements

are actually present in comprehensive cellular interaction networks.

It remains to be seen whether the enriched levels of specificity

observed in the yeast AP/MS data sets also exist in AP/MS data for

other organisms, particularly those that do not have multiple

compartments. The modular nature of the specificity discovered

here for the yeast AP/MS data indicates a clear biological

propensity for the formation of individually functioning complexes.

Maximum insights into the nature of this selective clustering will be

gained by mapping biological properties of the proteins, such as

function and compartment locality, upon the scored interaction

data. While we have carried out such analyses, these results will be

presented and discussed at a later time. Previous studies of AP/MS

data suggest that high-confidence interactions most likely occur

between proteins having the same function and locality [16] and we

can confirm that the modules involve proteins of similar function

(results not shown). Therefore, the observed assortative mixing by

degree also exists for biological function. Comprehensive analysis of

the mixing patterns by function and compartment in high-quality

AP/MS and Y2H PINs should yield further insights into the natures

of interaction detection of both platforms.

We anticipate that our scored yeast data sets will be valuable for

further biological discovery and that our technique will be useful

for the analysis of current and future AP/MS data sets for a variety

of species.

Supporting Information

Table S1 IDBOS scores for pairs of proteins having co-

occurrences greater than one in the AP/MS data of Gavin et al. [8].

Found at: doi:10.1371/journal.pcbi.1000515.s001 (0.80 MB

TXT)

Table S2 IDBOS scores for pairs of proteins having co-

occurrences greater than one in the AP/MS (MALDI) data of

Krogan et al. [9].

Found at: doi:10.1371/journal.pcbi.1000515.s002 (0.69 MB

TXT)

Table S3 IDBOS scores for pairs of proteins having co-

occurrences greater than one in the AP/MS (LCMS) data of

Krogan et al. [9].

Found at: doi:10.1371/journal.pcbi.1000515.s003 (2.41 MB

TXT)

Figure S1 Evaluations comparing the scoring schemes of

IDBOS (this work) and Collins et al. [16] when applied to the

purification data of Krogan et al. [9]. IDBOS-Krogan scores were

obtained by combining the individual IDBOS-Krogan (MALDI)

and IDBOS-Krogan (LCMS) scores. When an interaction

occurred in both data sets, a commensurate score was obtained

by multiplying P-values (conversion from Z scores). Four diverse

reference interaction data sets were used (A) BGS; (B) PCA; (C)

SBMC2; (D) MIPS. See Materials and Methods for full

descriptions of these references. Also shown is the scored data of

Hart et al. [17] (determined by multiplying individual results

across the Gavin et al. [8], Krogan et al. [9], and Ho et al. [7] AP/

MS data sets) and evaluations for Y2H data sets of Yu et al. [6]

(CCSB-YI1), Ito et al. [4] (core subset), Uetz et al. [5], and a union

of these data sets [6] (Y2H-union).

Found at: doi:10.1371/journal.pcbi.1000515.s004 (0.78 MB

DOC)

Figure S2 Depictions of interaction data sets generated from the

raw AP/MS data of Gavin et al. [8] using the (A) spoke (bait-prey

tabulation) and (B) matrix (bait-prey and prey-prey tabulations)

models.

Found at: doi:10.1371/journal.pcbi.1000515.s005 (0.31 MB PDF)
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