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Abstract

The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must
have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The
quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions,
but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies
theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA
replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension
for Watson-Crick versus mismatched base pairs), replications without enzymes, with ribozymes, and with protein-based
polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed
this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts
in sequence space toward ‘crystallization.’ This region encloses the experimental nonenzymatic fidelity value, favoring
evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe
threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to
determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our
findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to
form prebiotic genomes due to the value of their nonenzymatic fidelity.
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Introduction

All biological organisms are evolutionarily related. The salient

characteristics of life (reproduction and selection) must have

therefore emerged either gradually or abruptly from inanimate

chemical processes some time in the early history of the Earth.

Our ever-increasing knowledge on the biochemical and genetic

basis of modern life forms should guide the quest to understand

this transition, in addition to the chemistry of potential building

blocks [1,2] and geochemical considerations [3,4]. The lack of

fossil evidence forces us to rely on model building, which can

often be tested experimentally in the laboratory [5]. One of the

simplest and most promising is the RNA world hypothesis

[1,6,7], which proposes RNA molecules as precursors to modern

life forms consisting of DNAs as carriers of genomes and proteins

as molecular machines. Continued progress in experimental

studies has yielded a diverse range of evidences supporting this

hypothesis. In particular, plausible synthetic routes to nucleo-

tides [2] and oligomers [8] have been demonstrated. RNA

ribozymes capable of catalyzing RNA replications have been

designed and synthesized via in vitro selection [9,10]. Extensive

studies of RNA folding landscapes further demonstrate the

capability of RNAs to function both as carriers of genotypes and

phenotypes [11,12].

Conceptual difficulties to this scenario include the need for the

existence of sufficiently concentrated and pure building blocks

(chirally selected nucleotides for RNAs) and the necessity to

explain subsequent evolutions of multi-chemical autocatalytic

systems [13]: the incorporations of proteins and nonreplicative

metabolic networks. In this context, Nowak and Ohtsuki recently

considered a model describing a pre-evolutionary stage with

nonreplicative chemical selection [14]. The undeniable strength of

the RNA world hypothesis, nevertheless, is that it has the potential

to provide an empirically well-tested pathway for the transition

from chemistry to biology, irrespective of its factual historical

relevance. The relative simplicity of the model should also allow

quantitative descriptions that can complement empirical ap-

proaches.

Our focus in this paper, in particular, is the transition from the

first RNA molecules formed, which must have been pools of near-

random RNA sequences, to the first genomes coding for RNA

ribozymes. Crucial in understanding such an emergence of the

first RNA genomes is the error threshold predicted by the

quasispecies theory [15–17]. At this threshold, the structure of a

population of RNA sequences shifts from being dominated by a

stable genome (‘master sequence’) to becoming random pools, or

vice versa. This transition can also be described and understood in

the context of more general population dynamics models [18,19],
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for which many exact results have now been obtained based on

statistical physics approaches [17,20–24]. The error catastrophe

transition is in the forward direction, and has thus been likened to

‘melting’ by Eigen [15]. The transition has recently been observed

in behaviors of modern RNA viruses exposed to mutagens [25,26]:

a moderate artificial increase in mutation rates of viruses can lead

to a complete extinction of virus populations. The error threshold

is roughly proportional to the inverse of genome length, which also

raised the question of how genomes long enough to encode error

correction could have evolved under high error rates (Eigen’s

paradox) [15,27,28]. Notably, Saakian et al. [29] have recently

applied analytical treatments of quasispecies theory to consider this

question. Higher organisms keep error rates down to levels that

are orders of magnitude lower than achievable by polymerases

only, using sophisticated error correction mechanisms including

mismatch repair complexes. Tannenbaum et al. [30,31] have

studied the quasispecies models of organisms posessing mismatch

repair genes, finding transitions analogous to the classic error

catastrophe transition in repair-deficient mutator frequencies.

The prebiotic evolution in the RNA world is in the opposite

direction of the error catastrophe transition, and may thus be

referred to as ‘crystallization.’ In an equilibrium fluid, whether one

observes melting or crystallization is determined by the changes in

temperature and pressure. Can we find analogous conditions for

the emergence of the first genomes? Addressing this question

requires connections to thermodynamics of RNA synthesis. Recent

developments in the theory of nucleotide strand replication [32–

34] provide a promising new direction to bridge the gap between

the basic chemical thermodynamics of RNA synthesis and

molecular evolution. The mean error rate of replication increases

as the reaction condition approaches equilibrium, contributing to

entropy production [32]. With a combination of this single-

molecule thermodynamics and quasispecies theory, a surprisingly

complete analogy to equilibrium fluids was proposed [34], where

volume, pressure, and temperature are replaced by replication

velocity, thermodynamic force, and inverse fidelity, respectively,

with counterparts of condensation, sublimation, critical point, and

triple point. Based on the analysis of a model replication kinetics

equivalent to the Jukes-Cantor model of DNA evolution [35], it

was suggested that the prebiotic evolution of RNA strands may

have been biased by a thermodynamic driving force toward

increasingly higher fidelity of polymerase ribozymes below a

certain threshold [34].

To what extent these theoretical predictions are applicable to

the actual prebiotic evolution that occurred in the past must

ultimately be judged based on quantitative empirical data from

existing and new experiments. Here, we extend our previous work

[34] and assess the applicability of this thermodynamic theory of

molecular evolution to prebiotic evolution, using experimental

data for polymerization kinetics currently available in the

literature. Our results based on these empirical data provide a

strong support for the main conclusion of the theory, that there is a

thermodynamic driving force biasing random sequence evolutions

in the absence of genomes toward higher fidelity in a certain

regime of parameter spaces. With considerations of the time-

dependent evolutionary behavior of RNA populations, we

furthermore show that it is possible to estimate the time scales

that would have been required for a random sequence pool to

crystallize a newly discovered master sequence under a given

thermodynamic condition. These results also shed new light on

Eigen’s paradox. Most importantly, our approach enlarges the

scope of both the quasispecies theory-based discussions of the

stability of genomes and biochemical approaches to RNA

replication by introducing the concept of thermodynamic driving

forces and constraints in molecular evolution.

Results/Discussion

RNA replication kinetics and thermodynamics
The thermodynamic theory of molecular evolution [34]

combines the kinetics and thermodynamics of RNA replication

on a single-molecule level with population-level features. We first

consider the molecular level description of RNA synthesis (or

elongation): an elementary step of insertion by addition of a

nucleotide (Figure 1A) consumes a nucleoside triphosphate (NTP)

and produces a pyrophosphate (PPi). Its driving force F is given by

F~F0z ln
½NTP�
½PPi� , ð1Þ

where F0 is defined such that F~0 at equilibrium (see Methods). We

may estimate the equilibrium constant from DG0~5:3 kcal=mol of

DNA phosphodiester bond formation and DG0~{10:9 kcal=mol
of NTP?NMPzPPi (NMP: nucleoside monophosphate), yielding

DG0~{5:6 kcal=mol [36,37]. This value likely overestimates the

magnitude of F0 because it ignores the unfavorable entropy change

of binding a free NTP monomer, leading to F0 *v 9.

One may seek the origin of the observed high-fidelity of

polymerization reactions [38] in the relative thermal instability of

incorrectly formed Watson-Crick base pairs. However, the stability

differences between correctly and incorrectly inserted nucleotide

pairs are small: an experimental estimate based on melting

temperature measurements for the difference in free energy

between incorrect and correct pairs yielded DDG~0:33 kcal=mol
[39], which we adopted in this work. This value is the average of

the relative stabilities of nucleotides G, C, and T (0:25, 0:33, and

0:41 kcal=mol, respectively [39]) with respect to A in a DNA 9-

mer duplex terminus against the template base T. The precise

value depends on the identity of the base pairs at the terminus and

at the neighboring position immediately upstream: for DNAs,

duplex stabilities including effects of mismatches can be reliably

estimated based on nearest neighbor interactions [40]. Longer-

ranged interactions presumably play more important roles for

RNAs, which form secondary structures and higher-order folds

[41], affecting DDG values. Frier et al. [42] provided values of free

energy contributions to the duplex stability from all 16 possible

terminal RNA base pairs and mismatches next to 4 distinct base

pairs upstream (Table 4 in Ref. [42]). From these data, we

calculated DDG~0:82+0:24 kcal=mol, comparable to kBT .

In quantitative descriptions encompassing both the high

kinetic selectivity and this marginal stability difference, it is

Author Summary

A leading hypothesis for the origin of life describes a
prebiotic world where RNA molecules started carrying
genetic information for catalyzing their own replication.
This origin of biological information is akin to the
crystallization of ice from water, where ‘order’ emerges
from ‘disorder.’ What does the science of such phase
transformations tell us about the emergence of genomes?
In this paper, we show that such thermodynamic
considerations of RNA synthesis, when combined with
kinetics and population dynamics, lead to the conclusion
that the ‘crystallization’ of genomes from its basic
elements would have been spontaneous for RNAs, but
not necessarily for other potential building blocks of
genomes in the prebiotic soup.
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important to fully take into account the reversibility of the

reactions [32]. We adopt the simplest description of the kinetics

of polymerization, specified by 16 forward and reverse rates,

kz(aDb) and k{(aDb), respectively, each corresponding to the

insertion and its reverse of a nucleotide (a~A,U ,G,C) against a

template base (b~A,U ,G,C; Figure 1A). In reality, these rates

do depend on the identity of base pairs immediately upstream

[40,41], which may lead to stalling after incorrect incorporations

[28]. More importantly, however, these rates also depend on

½NTP� and ½PPi�. We estimated the forward rates from the

available experimental data of primer extension under the far-

from-equilibrium limiting condition [9,28,43–49]. The backward

rates can then be related to the forward rates via equilibrium

stability.

In general, the overall elongation reaction of a single nucleotide

goes through a transition state, whose activation energy is

differentially affected by the action of polymerases. If one ignores

the reverse reaction under the condition of ½PPi�?0, the

Michaelis-Menten kinetics applies for the primer extension. In

the limit of small ½NTP�, we then have kz?kpol=Kd , the latter

representing the apparent second-order rate constant with the

substrate dissociation constant Kd and the turnover rate of product

formation kpol [50]. Measurements of polymerase-catalyzed

reactions show the selectivity reflected in differences in Kd for

correct and incorrect base pairs to be orders of magnitude larger

than equilibrium stability differences [39]. Examples currently

found in the literature are shown in Tables 1 and 2, including

those for activated nonenzymatic polymerization (DNA replication

Figure 1. Kinetics and thermodynamics of RNA replication. A: Single-molecule kinetics. B: Population dynamics.
doi:10.1371/journal.pcbi.1002534.g001

Table 1. Reference base incorporation rates kz(aDb) of NTPs (rows) against template bases (columns).

A. Nonenzymatic [28]

A T G C

ATP 2:0|10{10 6:1|10{9 5:6|10{10 2:1|10{10

TTP 1:8|10{9 1:6|10{10 1:6|10{10 7:1|10{11

GTP 3:1|10{10 3:4|10{10 4:9|10{10 9:6|10{8

CTP 1:2|10{10 1:0|10{10 3:2|10{8 7:2|10{11

B. R18 ribozyme [9]

A U G C

ATP 3:0|10{10 1:5|10{6 1:4|10{10 1:8|10{11

UTP 8:8|10{8 2:9|10{10 3:0|10{8 3:6|10{12

GTP 3:8|10{10 1:2|10{7 4:1|10{10 9:0|10{8

CTP 1:2|10{10 1:5|10{10 6:8|10{7 1:8|10{11

C. Poliovirus1 3Dpol [43]

A U G C

ATP 8:9|10{5 0:65 6:1|10{4 1:1|10{3

UTP 1:2 4:8|10{5 6:1|10{4 1:1|10{3

GTP 8:9|10{5 4:8|10{5 6:1|10{4 15

CTP 8:9|10{5 4:8|10{5 8:3 1:1|10{3

Rates are defined as the apparent second order rate constant kpol=Kd (or the limit of kz(aDb) for small [NTP]) in units of mM{1s{1 .
1For poliovirus 3Dpol , the mismatch rate has been reported for only one combination (GTPDU). We assumed that the same ratio kz(GDU)=kz(ADU) applies to all NTPs
for each template base. The value for (UTPDA) is a harmonic mean of two data (0:78 and 2:7).
doi:10.1371/journal.pcbi.1002534.t001

Thermodynamic Basis for the Emergence of Genomes
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without enzymes) determined recently by Chen et al. [28]. Table 1,

in particular, shows the dramatic increase in the degree of relative

stabilization of the transition states for correct base pairs in

modern polymerases. The evolution of polymerases has entailed

two aspects: the facilitation of the overall elongation rate and the

amplification of the preferential attachment of correct versus

incorrect nucleotides. As we show below, this latter aspect of

selectivity evolution leads to a phase transition-like behavior,

profoundly affecting population dynamics of evolving macromol-

ecules.

To characterize this dual aspect of enzyme-catalyzed polymer-

ization reactions, we adopt a ‘reduced’ description involving two

key characteristics of forward rates: the mean base incorporation

rate k and the relative inverse fidelity c (the ratio of incorrect to

correct insertion rates). Precise definitions of these quantities in

terms of kinetic rates emerge from the mean field theory (see

Table 2. Reference base incorporation rates for DNA polymerases.

A. Sulfolobus solfataricus P2 DNAP IV (Dpo4) [44]

A T G C

ATP 9:9|10{6 7:8|10{2 2:7|10{5 2:6|10{5

TTP 4:1|10{2 1:8|10{5 6:0|10{5 1:2|10{5

GTP 6:0|10{6 7:1|10{5 6:1|10{5 5:5|10{2

CTP 1:3|10{5 8:4|10{5 1:1|10{1 1:8|10{4

B. Human pol m [45]

A T G C

ATP 1:2|10{6 8:0|10{3 6:9|10{7 6:0|10{7

TTP 5:6|10{2 5:0|10{7 7:1|10{7 3:7|10{7

GTP 9:1|10{7 4:1|10{6 3:3|10{6 3:0|10{2

CTP 3:0|10{6 6:1|10{6 6:4|10{2 2:1|10{6

C. Yeast pol d [46]

A T G C

ATP 7:7|10{7 1:7|10{2 8:8|10{7 2:8|10{6

TTP 9:8|10{3 9:0|10{7 2:7|10{6 2:8|10{6

GTP 5:2|10{7 8:0|10{6 5:3|10{7 2:5|10{2

CTP 6:7|10{7 1:8|10{6 3:2|10{2 3:3|10{7

D. Sulfolobus solfataricus P2 pol B1 [47]

A T G C

ATP 4:6|10{4 2:3 7:5|10{6 1:3|10{4

TTP 7:5|10{1 3:8|10{4 3:7|10{4 1:6|10{4

GTP 4:2|10{5 2:8|10{4 3:3|10{5 1:3

CTP 1:9|10{4 2:1|10{4 7:0|10{1 4:5|10{6

E. Human mitochondrial polymerase (pol ª)1 [48]

A T G C

ATP 1:4|10{4 57 1:7|10{4 6:3|10{4

TTP 39 2:3|10{4 8:0|10{4 7:0|10{5

GTP v10{4 0:016 4:4|10{4 45

CTP 1:9|10{4 1:0|10{4 47 2:0|10{5

F. Rat pol b [49]

A T G C

ATP 2:1|10{5 0:46 7:7|10{5 2:8|10{5

TTP 0:41 1:0|10{5 2:9|10{4 9:0|10{6

GTP 8:1|10{6 1:5|10{4 3:2|10{5 0:13

CTP 1:0|10{4 2:9|10{4 1:1 2:1|10{5

Rates are defined similarly in the same units as in Table 1.
1For pol c, it was assumed that kz(GDA)^10{4 .
doi:10.1371/journal.pcbi.1002534.t002
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Methods):

k~
X

a

kz(aDb)

b

, ð2aÞ

c~
1

3

P
a=b� kz(aDb)P

a kz(aDb)
b

, ð2bÞ

where b� is the Watson-Crick complementary base of b and the

angled brackets denote a harmonic mean over distribution u(b) of

template bases:

S � � � Tb:
1P

b u(b)=( � � � ) : ð3Þ

Figure 2 shows the distribution of these quantities among nine

polymerase systems whose polymerization kinetics have been

determined experimentally (Tables 1 and 2), in which we observe

qualitative trends of the evolutionary changes reflected on the

values of k and c: the k values of modern polymerases are *107

times larger than the activated nonenzymatic rate, while the

nonenzymatic fidelity (c*10{3) implies that the Watson-Crick

structure in the absence of enzymes already supports a fairly high

level of fidelity. The arrows illustrate the direction of evolutionary

changes that must have occurred from the nonenzymatic to

protein-based polymerases via the polymerase ribozymes in the

RNA world.

The nonenzymatic data are for the templated oligomerization of

activated nucleotide analogs, the nucleoside 5
0
-phosphorimidazo-

lide, where PPi is replaced by the imidazole group [28]. Zielinski et

al. have compared the kinetics of RNA versus DNA elongation of

the activated system [51]. They concluded that RNA elongation is

more efficient because its A-form helical structure positions the 3
0
-

OH group towards the incoming monomer, whereas contributions

of wobble-pairing appeared to facilitate mismatches. This study

suggests that the nonenzymatic kinetic rates for RNAs may have

higher k and c values than for DNAs. We nevertheless expect their

order of magnitudes to be similar.

Mean field theory
The kinetic rates and thermodynamic conditions (the value of F )

allow us to extract, using simulations in general (see Methods), the

main stationary properties of RNA elongation: the mean elongation

velocity n (the average number of nucleotide pairs added per unit

time) and error rate m (the average fraction of mismatched nucleotide

pairs). They differ from their respective microscopic counterparts, k

and c, because of varying contributions of the reverse rates as

functions of F . Importantly, exact analytic expressions for the

stationary properties can be obtained if the kinetic rates have

sufficient symmetry: the set of kz(aDb) for all a is independent of the

identity of b (‘symmetric template models;’ see Methods and Figure 3).

In Ref. [34], an important special case of symmetric template

models

kz(aDb)~k
0

da,b�z(1{da,b� )c
0h i

, ð4Þ

equivalent to the Jukes-Cantor model of DNA evolution [35], was

considered. The Jukes-Cantor model is a two-parameter model,

while general symmetric template models have four parameters.

However, to quantitatively assess the applicability of the theory

based on empirical data of RNA replication kinetics, it is necessary

to allow all 16 values of kz(aDb) to be independent empirical

parameters. Here, we used a version of the mean field theory that

generalizes the analytic results with the following expressions for

the elongation velocity n and error rate m (see Methods):

q(aDb)~
kz(aDb)

n(b)zk{(aDb)
, ð5aÞ

X
a

q(aDb)~1, ð5bÞ

n~Sn(b)Tb, ð5cÞ

m~
X

a=b�
q(aDb)

b

, ð5dÞ

where q(aDb) denotes the probability to find a base-paired to b, and

Eq. (5b), the normalization condition for q(aDb), determines n(b),
the mean velocity of nucleotide addition against template base b.

Equation (5a) is a generalization of the equilibrium Boltzmann

distribution, to which it reduces to when n(b)~0, and is exact for

symmetric template models (Figure 3). Because the complete

reproduction of an RNA strand requires a pair of replications, we

also considered the net error rate m2 of two consecutive replications:

m2~
X
a=c

X
b

q(aDb)q(bDc)

c

: ð6Þ

For connections to thermodynamics, one must calculate the

entropy production (in units of kB) per monomer addition [32]:

Figure 2. Variations of inverse fidelity ª and mean base
incorporation rate k among polymerases. See Tables 1 and 2 for
the references. Arrows show the likely direction of evolutionary
changes.
doi:10.1371/journal.pcbi.1002534.g002
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F~
X

b

u(b)
X

a

q(aDb) g(aDb){ ln q(aDb)½ �, ð7Þ

where the first term in the square brackets represents the

contribution of monomer consumptions to dissipation and the

second term corresponds to the disorder creation by copying errors.

The average in Eq. (7) is an arithmetic mean since F is not a rate

and should match the external thermodynamic force given by Eq.

(1) in stationary states. The quantity {g(aDb) is the free energy

change in units of kBT (or the negative of entropy production) for

the addition of a nucleotide a against b, with which the backward

rates k{ are expressed in terms of forward rates kz via

k{(aDb)~kz(aDb)e{g(aDb): ð8Þ

The dependence of g(aDb) on concentrations of monomers is

nontrivial because four NTPs compete for a single site. Relative

stabilities of correct versus mismatched base pairs (DDG), in

contrast, are expected to be largely insensitive to concentrations.

The following form of g(aDb) reflects this expectation [34]:

g(aDb)~g{(1{da,b� ) ln g, ð9Þ

Figure 3. Numerical tests of mean field theory. A: Three components of q(aDA) as functions of g for a symmetric template model for which the
mean field theory is exact. The rates were given by kz(aDA)~(0:03,1:0,0:05,0:04), kz(aDU)~(1:0,0:05,0:04,0:03), kz(aDG)~(0:05,0:04,0:03,1:0), and
kz(aDC)~(0:04,0:03,1:0,0:05) for a~A, U, G, C. Lines are from Eq. (40). Symbols are from numerical simulations. B: Test of site-independence for the
sequence distribution, Eq. (35), with pol b rates (Table 2F). All symbols were calculated from numerical simulations. C–D: Mean velocity (C) and error
rate (D) for the pol b kinetics, both with full experimental kinetics (Table 2) and Jukes-Cantor version (JC) derived from the full kinetic set. Symbols are
from simulations, which verify that for JC kinetics the mean field prediction is exact.
doi:10.1371/journal.pcbi.1002534.g003

Thermodynamic Basis for the Emergence of Genomes
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where g~eDDG=kBT , and the parameter g accounts for the

dependence of g(aDb) on concentrations (with mole fractions of

NTPs assumed to be maintained equal during variations of

[NTP]/[PPi]). With DDG~0:33 kcal=mol, we have g~1:73 at

T~300 K. Further physical insights into the free energy

parameter g can be gained by considering the condition of

equilibrium (see Methods).

It can be shown that m ranges from a minimum mmin~3c far

from equilibrium (F??, n?k), leading to Eq. (2b), to a

maximum mmax~3=(3zg) at equilibrium (F~n~0) (see Meth-

ods). This variation of m with varying thermodynamic force F can

be interpreted as follows: near equilibrium, both the correct (faster)

and incorrect (slower) incorporation steps are balanced by their

reverse steps, leading to comparable net incorporation statistics.

Far from equilibrium, the reverse rates become negligible and the

faster correct incorporation dominates.

In Figure 3A, we show that the mean field theory is exact for

arbitrary symmetric template models. Figure 3B supports the site-

independence of q(aDb) [Eq. (35) in Methods] for more general 16-

parameter cases. Comparisons of the mean field theory predictions

for elongation properties of pol b kinetics (Table 2) with

simulations (Figure 3C–D) show that the theory generally gives

reliable results. The Jukes-Cantor reduction of empirical rates [Eq.

(4)] based on Eqs. (2) is also seen to give a good approximation

over all parameter ranges, showing that the analytical theory

developed in Ref. [34] provides accurate descriptions of realistic

kinetics. Nevertheless, for the best numerical accuracy of

predictions based on experimental kinetics, we based our main

results in the following sections on stochastic simulations.

Importantly, however, the mean field theory in the current

application yields the definitions given by Eq. (2), in addition to the

analytical limits of velocity and error rate (see Methods), which we

verified exactly from simulations.

Single-molecule properties
We applied this single-molecule description of RNA replication

to three experimental systems: nonenzymatic reactions [28],

‘Round-18’ (R18) polymerase ribozyme [9], and poliovirus

Figure 4. Single-molecule elongation properties as functions of F. A–B: Mean RNA sequence elongation velocity n in units of k (A) and mean
error rate (B) with nonenzymatic, R18 ribozyme, and poliovirus 3Dpol kinetics, which show supercritical, near-critical, and subcritical behaviors,
respectively. Green arrows indicate discontinuous jumps for poliovirus. The diamonds denote m values using the poliovirus sequence (instead of
random sequences for others), and the triangles indicate m2 for poliovirus. C–D: Mean elongation velocity (C) and mean error rate (D) with increasing
fidelity based on rescaled nonenzymatic kinetics.
doi:10.1371/journal.pcbi.1002534.g004

Thermodynamic Basis for the Emergence of Genomes
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polymerase (3Dpol) [43] (Figure 3), each representing the

beginning, intermediate, and late stages of evolution. As has been

previously observed in Ref. [34] for the Jukes-Cantor model, the

qualitative trend shown in Figure 4 parallels that of fluids

undergoing vapor-liquid transitions with decreasing temperature

when pressure, volume, and temperature are replaced by

thermodynamic force F , velocity n, and inverse fidelity c,

respectively. The correspondence of c to temperature in fluids,

in particular, is natural because it is a microscopic measure of

randomness destroying genomic information. Figure 4A,B shows

that for high inverse fidelity c (nonenzymatic), the elongation

velocity n and error rate m monotonically increase and decrease,

respectively, with increasing F . A critical point is crossed

(ribozyme) as c decreases, and n and m become nonmonotonic

(3Dpol) with discontinuous jumps for decreasing F (‘evaporation’).

The error rate m2 exhibits the same qualitative behavior

(Figure 4B). These results verify the biological applicability of

the theoretical predictions made previously in Ref. [34], based on

known experimental kinetic data of systems representing key

milestones of evolutionary processes (Figure 2).

The key question then is: how would these changes in the

elongation behavior of RNA replication actually have occurred

during the prebiotic evolution? To address this question, we

modeled the increases in fidelity from the nonenzymatic starting

point by uniformly rescaling the incorrect incorporation rates

[kz(aDb), a=b�] of the set of nonenzymatic kinetics (Table 1) to

produce different values of c. Simulations identified the critical

point suggested in Figure 4A,B at cc~7:6|10{4 and verified the

limits of error rates at and far from equilibrium predicted by the

mean field theory exactly (Figure 4C,D).

Phase behavior
We then scanned the variation of these phase behavior for

different values of c and F to generate the phase diagrams shown

in Figure 5, which confirms that the qualitative features of the

Jukes-Cantor model phase diagram [34] are preserved for

empirical RNA replication. However, as opposed to the results

in Ref. [34] that represent generic predictions, Figure 5 is based on

empirical nonenzymatic kinetics and its uniform rescaling, with no

other adjustable parameters.

Figure 5. Thermodynamic phase diagrams of RNA replication. A–B: The F -c diagrams with color levels and contours (black dashed lines)
representing ng (A) and m2 (B). The black solid lines show the spinodal terminated by the critical point (filled circles). The red solid lines show the L-C
transition for A~e and M~102 , which meets the spinodal at the triple point (open circles). The white dashed lines show the boundary of
l~Lng=Lcv0 region (smaller c side). The green dashed lines show the analogous region of Fi values for starvation processes (F0~5). The vertical
lines show the location of the nonenzymatic c value. C–D: The c-ng and c-m2 diagrams. The green dashed lines represent the lv0 boundary. The blue
dotted lines give the maximum and minimum n and m2 , respectively, and the red dotted line in D denotes the maximum error rate at equilibrium. The
fitness ng is in units of k0 .
doi:10.1371/journal.pcbi.1002534.g005
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The discontinuous jumps shown in Figure 4C,D correspond to

the limit of stability (‘spinodal’; thick black lines) of the ‘liquid’ or L

phase (high n-low m2 state) against the ‘gas’ or G phase (low n-high

m2 state). In equilibrium, the location of a phase transition in the

phase diagram is determined by the equality of free energies of the

two phases [52,53]. Here, we adopted the assumption that if

multiple stationary states exist for a given F , the state with higher n
(and lower m2) is chosen. This assumption is based on the

relationship

_SS~F
X

l

nl~NFng, ð10Þ

connecting the entropy production rate _SS to F and the velocity nl

of RNA replicator l present in the system, where N is the total

number of replicators and ng is the mean velocity (or ‘fitness’). The

analogy to equilibrium phase behavior also excludes the first-order

character of liquid-solid transitions, which for the current case is

continuous. Equation (10) is a special case of a general relationship

between nonequilibrium fluxes and conjugate forces [52]. In this

formulation, a state with high ng contributes more to entropy

production. This assumption is consistent with the standard

interpretation of the replication rate as a measure of fitness

[15,54]. The multiplicity of stationary states at a single-molecule

level is supported by the recent demonstration of a real-time

sequencing-by-polymerization technique [55], where it was

reported that polymerases interconverted between two distinct

velocities during DNA elongation for a given reaction condition

(Figures 3C and S3 of Ref. [55]). A complete kinetic character-

ization of the w-29 polymerase used in this experiment would allow

us to make a more quantitative assessment of this interpretation.

Population dynamics
In considering the thermodynamic interpretation of the

population dynamics of RNA sequences, we adopt the following

physical model (Figure 1): during evolutionary drifts of a random

population in sequence space, a particular sequence that folds and

catalyzes the replication of RNAs with the same sequence (and no

others) is ‘discovered.’ (In reality, a ribozyme would more likely

have had catalytic activities for arbitrary sequences. The selectivity

toward its own sequence, instead, would have arisen from the need

for spatial diffusion in order to act on other sequences.) This

sequence therefore has a higher k value [Eq. (2a)] compared to

others, leading to the single-peak Eigen landscape [Eq. (18)

below]. Our goal in this and the following subsections is to

describe the growth and stability of this master sequence. In Ref.

[34], the basic quasispecies theory under the single-peak landscape

was combined with the theory of a single-molecule elongation. We

expanded this treatment by considering different scenarios of how

F and c may have been distributed in RNA populations

(Figure 1B).

For the inverse fidelity c, one may first assume that it is nearly

uniform (or regard it as an average over replicators) in a

population, as has been assumed implicitly in Ref. [34]. We also

assumed that only the RNA strands with a certain polarity

(analogous to the positive or negative-sense polarities of viral

genomes [56]) have catalytic activities, such that a pair of

replication events is necessary to reproduce a polymerase

ribozyme. This feature makes the current treatment more realistic

for RNA prebiotic evolution compared to those in Ref. [34]. The

following derivation of the thermodynamic quasispecies theory in

this subsection otherwise adopts the approach therein [34].

In a population of self-replicating RNAs with genotypes labeled

by index i, the genotype i catalyzes replications with rates

kz
i (aDb)~ki k(aDb), ð11Þ

where ki is the equivalent of Eq. (2a) for the genotype i specified by

a fitness landscape. The relative rate k(aDb) specifies the rate of

addition of nucleotide a against base b, all normalized such that

S
P

a k(aDb)Tb~1. In this model, therefore, all genotypes have the

same set of relative enzymatic rates for nucleotide pairs (and the

same value of c), while differing in their absolute magnitude of

catalysis, ki. This assumption of uniform inverse fidelity is

reasonable for populations with genotypes distributed within a

small neighborhood of a master sequence (or a small random

subspace in the absence of a master) in the sequence space. The

elongation velocity ni is given by

ni~nki, ð12Þ

where (the relative velocity) n is now determined from Eqs. (5c)

with kz(aDb) replaced by kz(aDb), and the replication rate of

genotype i is

ri~
ni

2M
~

n

2M
ki ð13Þ

because a pair of replication events requires the addition of 2M
nucleotides, where M is the length of genome.

The mutation rate Qij from genotype j to i is given by

Qij~(1{m2)M{dij (m2=3)dij , ð14Þ

where dij is the Hamming distance (the number of nucleotides that

are different) between i and j. Denoting the number of individuals

(of the polarity that has catalytic activity) with genotype i as ni, the

evolving population in the Eigen model [15,16] without

constraints on the population size obeys the dynamical equation,

_nni~
X

j

Qijrjnj : ð15Þ

At any time t, the total number of all individuals (population size)

N is given by N~
P

i ni, which from Eq. (15) changes via _NN~rN,

where r~
P

i ripi is the population growth rate (mean fitness) with

the frequency of genotype i, pi~ni=N. Therefore, for a given

population characterized by the set fnig, the corresponding

entropy production rate is given by Eq. (10) with

ng~2Mr: ð16Þ

Similarly, under an idealized condition where replication occurs

together with degradation [15,17,57], a population can evolve

under a constant F with a fixed mean population size. In this case,

a replication event occurs with the same rate as the random

degradation of a replicator. The evolution equation becomes

_nni~
X

j

Qijrjnj{rni, ð17Þ

such that N is constant. For the fitness landscape, we adopted the

single-peak Eigen landscape:
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ki~k0|
A if i is the master sequence,

1 otherwise,

�
ð18Þ

where k0 is a constant with the unit of a rate and Aw1 is the

relative fitness of the master sequence.

Under these simplifying approximations, the standard quasis-

pecies theory becomes applicable directly, with connections to

thermodynamics made by m2~m2(c,F ) and n~n(c,F ). These

fundamental relationships linking elongation properties to ther-

modynamic and kinetic parameters can be written in implicit but

closed analytical forms [34] for the Jukes-Cantor model. In the

numerical approach adopted here for arbitrary rates, simulations

are first performed for a given set of rate constants and c values to

obtain averages of n, m2, and F values as functions of g, as

illustrated in Figure 1 of Ref. [34]. The implicit parameter g is

then eliminated to obtain n and m2 as functions of F (Figure 3C–

D). For the region in which multiple branches of n exist for a given

F , the branch with the largest n (L phase) is chosen.

In the infinite population limit, the quasispecies is either

dominated by the ‘master species’ with the mean fitness

r~(k0 n=2M)A(1{m2)M^(k0 n=2M)Ae{m2M , where (1{m2)M

is the probability of replicating M sites over two consecutive cycles

without error [see Eq. (6)], or by the ‘mutant species’ with fitness

r~k0 n=2M. From Eqs. (13) and (16), the mean fitness is therefore

given by

ng~k0 n|
Ae{m2M if m2vm�2 ,

1 otherwise,

�
ð19Þ

where

m�2(c,F )~
ln A

M
ð20Þ

denotes the threshold error rate for which ng becomes the same for

the master mutant species. Equation (19) implies that a constant-

m2 contour (red lines in Figure 5) is the ‘melting line’ separating a

‘crystalline’ (C) phase from the L phase [34]. As shown in Figure 5,

the L-C transition line meets the L-G line at the triple point, below

which the C and G phases meet directly (‘sublimation’). Our

results show that this fairly complete analogy to the equilibrium

phase behavior of fluids discovered first in Ref. [34] is indeed

equally applicable in more realistic considerations of RNA

prebiotic evolution.

The L-C transition line lies at the heart of the crystallization of

genomes that may occur during evolutionary walks [13] in

sequence space. The presence of the L phase distinct from the G

phase below the critical point has an important consequence to

such sequence explorations: despite the absence of a stable

genome, analogous to liquid phases with short-range orders, RNAs

in the L phase with m2*10{2 (Figure 5D) would still exhibit

sequence correlations for a significantly large number of gener-

ations. We may use the Jukes-Cantor relationship between the

error rate and the cumulative mean Hamming distance d from an

ancestral sequence after l generations [35],

m2 l~{
3

4
ln (1{4d=3M): ð21Þ

A typical sequence in the G phase with m2^0:5 (Figure 5D), for

instance, would evolve to reach d~M=2 in just l^1:6 genera-

tions, on average, whereas in the L phase with m2^0:02, it would

do so in l^41 generations. Therefore, when a system ‘evaporates’

into the G phase, an ancestral sequence gets lost in a couple of

generations. In contrast, conditions in the L phase, with error rates

comparable to those in the C phase nearby in the phase diagram,

would greatly facilitate crystallizations of viable genomes.

In interpreting the physical distinction between L and G phases,

it is useful again to compare them with their analogs in equilibrium

fluids, the liquid and gas phases in a container. The pressure of a

fluid in equilibrium is controlled by the external force per unit area

of the container, which matches the average of microscopic forces

per unit area exerted by molecules on the wall interior. At high

temperatures (the average kinetic energy of molecules), a given

external pressure can be balanced by the mean force of a state

(gas), where density is low and molecules rarely interact. The

equilibrium density is then roughly proportional to pressure and

inversely proportional to temperature. At low enough tempera-

tures, a given external pressure can also be matched by a different

phase (liquid) with a much higher density held together by

intermolecular attractions. Both gas and liquid phases are

characterized by the lack of long-range order. The sharp boundary

between them appears when temperature goes below the critical

value because the effect of molecular interaction renders a certain

range of pressure values unstable.

Analogously, an RNA molecule replicating in a chemical

reservoir is driven by the external thermodynamic force given by

Eq. (1), which matches the average entropy production per

monomer addition. For large c values, the replication is nearly

random and the second term of Eq. (7), the sequence disorder

contribution to the entropy production, is constant (^ ln 4),

making the dependence of internal F on g monotonic [34]. With a

sufficiently small c, in contrast, the sequence disorder nearly

vanishes, reducing the entropy production. This change is

compensated by the dominance of faster correct incorporation

steps, with the corresponding increase in velocity and decrease in

error rates. A given value of external F can be matched either by a

state with low velocity and high errors (G phase), or by one with

high velocity and low errors (L phase), each distinguished by the

relative importance of the two terms in the square brackets in Eq.

(7). The sharp boundary between them appears because, for

intermediate values of n, stationary states become unstable against

fluctuations. The neighborhood of regimes where the C phase is

stable is dominated by the L phase (Figure 5) in which the error

rate is comparable to those in the C phase, if c is subcritical.

For the population as a whole, random drifts in c due to

sequence explorations are not isotropic but, rather, are biased

toward the direction of increasing ng. In our previous work [34], a

threshold was identified within the phase diagram separating

regimes where the direction of this bias shifts. We sought the

analog of this threshold in Figure 5 corresponding to the evolution

of RNAs, where the region in which l~Lng=Lcv0 in the L phase

(white dotted lines in Figure 5A, B) includes the nonenzymatic

fidelity value and links it to the C phase. Inside the C phase, l is

always negative (Figure 6A). Once a population has c values to the

left of the white dashed line in Figure 5A, random drifts in

sequence space would be biased toward increasingly higher

fidelity, leading to crystallization and stable genomes.

Stochastic evolutionary dynamics
We next relaxed the assumption that c is uniform within a

population (c?ci is the value for genotype i). Equation (13) is then

replaced by

Thermodynamic Basis for the Emergence of Genomes
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ri~
ki

2M
n(ci,F), ð22Þ

for which numerical simulations have to be used. An efficient

method to extract collective population dynamics of competing

molecules is again provided by the Gillespie algorithm [58], which

was first applied to the quasispecies dynamics by Nowak and

Schuster [59]. The set of possible reactions corresponding to Eq.

(17) a population can undergo are written as

Ri ?

Qjiri

RizRj
, ð23aÞ

Ri ?

r

1
, ð23bÞ

where Ri is a replicator of genotype i. The mutation matrix is

given by

Qji~ 1{mið ÞM{dji (mi=3)dji , ð24Þ

where mi~m2(ci,F) is the error rate of reactions catalyzed by the

genotype i.

We tested this simulation algorithm using the special case of the

exponential growth of a population with no degradation [Eq. (23a)

only], uniform error rate (mj~m2), and the initial condition of

single master sequence under Eq. (18) (see Methods and Figure 7).

Systems with replication and degradation [Eqs. (23)] using

uniform m2 and initial population size of 104 were also simulated,

in which the total population size showed moderate diffusional

drifts but roughly remained the same over typical trajectories, and

p1 decayed to reach the steady state values (Figure 8) predicted by

the infinite population result. These results show that the steady

state reached in simulations depends neither on the initial

conditions (single replicator or a large population) nor the

boundary conditions (no degradation or constant N).

Crystallization kinetics
We used the constant-N stochastic evolutionary dynamics

simulations to examine the temporal evolution of quasispecies.

The inverse fidelity ci was assumed to depend on genotype i via

the same form of single peak landscape as for fitness:

Figure 6. Dependence of mean fitness on fidelity. A: Mean fitness as a function of c at constant F . The slope l~Lng=Lc is negative below a
threshold c for each F (white dashed lines in Figure 5A,B and green dashed lines in Figure 5C,D, respectively). The discontinuous jump for F~0:4 and
the cusps at smaller c values correspond to G-L and L-C transitions, respectively. B: Mean fitness averaged over starvation processes (F0~5) for
different initial thermodynamic force Fi (see Figure 10). The slope ls is negative below a threshold c for each Fi (green dotted lines in Figure 5A,B).
Vertical lines represent the nonenzymatic fidelity. The fitness ng is in units of k0 .
doi:10.1371/journal.pcbi.1002534.g006

Figure 7. Time dependence of master sequence frequency p1.
Stochastic simulation results of the Eigen model (solid lines, averaged
over 1000 trajectories) are compared with Eq. (54) (dotted line), where
r2~r1=A is the fitness of mutants, for M~102 and A~e. The initial
condition was ni~di,1.
doi:10.1371/journal.pcbi.1002534.g007
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ci~
c1 if i is the master sequence,

c2 otherwise,

�
ð25Þ

where we took c1~1:0|10{4 and c2~4:23|10{3 (the nonen-

zymatic value) in Figure 9. The time scale of simulations is set by

using k0=½NTP�~6:65|10{9mM{1 s{1 from the nonenzymatic

replication (Table 1) in Eqs. (18) and (22). We assumed

½NTP�~1 mM as a representative chemical environment, such

that k0~0:210yr{1.

Figure 9 shows two typical trajectories starting from an initial

pool of random sequences of length M~102, containing a single

replicator designated as the master sequence. This ‘seeding’ of the

population by a master sequence mimics the situation where a

genotype with a significantly higher fitness is discovered during

random drifts. The resulting evolution in Figure 9 is analogous to

‘crystal growths,’ in which the frequency of the master sequence

steadily grows to reach a value consistent with the stability of the C

phase (Figure 5): a master sequence with A~e and ci~10{4

spreads and dominates the population under thermodynamic force

F~1:0. The corresponding growth under F~0:5, which corre-

sponds to the vicinity of the L-C boundary in Figure 5, is much

weaker and slower, suggesting that the phase diagram remains

valid for inhomogeneous ci. The estimated time scales in Figure 9

(based on the activated nonenzymatic rates and ½NTP�*1 mM)

further suggest that the crystallization of a genome can occur

within *104 yrs under suitable conditions. However, as in

equilibrium fluids, it will never occur if thermodynamics precludes

a stable C phase.

Starvation process
We also considered an alternative setup where a population

growth occurs in a closed system, which leads to an evolutionary

change we refer to as the ‘starvation process.’ Similar situations

were also considered in Ref. [60]. During an idealized starvation

process, a single genotype is placed inside a medium containing a

given amount of NTPs and PPi’s with the corresponding initial

thermodynamic force Fi. The population growth leads to the

gradual depletion of NTPs and accumulation of PPi’s, lowering F .

Figure 8. Stationary frequency of master sequence. Stochastic
simulations results for the Eigen model are compared with
p1(?)~(qA{1)=(A{1). The simulations were under the condition of
(approximately) constant population size (N^104) using Eqs. (23). With
M~102 and A~e, the error threshold where p1~0 is at m�2~0:01. Error
bars represent one standard deviations.
doi:10.1371/journal.pcbi.1002534.g008

Figure 9. Crystallization of a genome. Stochastic simulations were used with genome length M~102 and mean base incorporation rate
k~6:65|10{9 s{1 . The initial population (N~104) contained random sequences and a single master sequence with relative fitness A~e. The
inverse fidelity was given by Eq. (25) with c1~1:0|10{4 and c2~4:227|10{3 . A: Relative frequency of the master sequence (initially 10{4). B:
Average of the fractional Hamming distance (HD; d=M^0:75 initially).
doi:10.1371/journal.pcbi.1002534.g009
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The error rate therefore increases over time. The growth of the

population would come to an end when the condition finally

reaches equilibrium (F~0). The resulting collection of RNAs in

reality may then disperse into fresh media, restarting new rounds

of starvation processes.

We introduce the fractional population size j with respect to the

asymptotic population reached in the limit of equilibrium (see

Methods). A single process starts with F~Fi, where ng is

maximum and j~0, and may undergo up to two transitions (C-

L and L-G) if cvcc to reach equilibrium, where F?0, j?1, and

ng?0 (Figure 10). In Figure 6, the mean fitness as a function of c
averaged over a starvation process (B) is compared with that

without the averaging (A). For c close to the nonenzymatic value

(vertical dotted line), ls~LSngT=Lc is negative in the L phase for

Fi above a threshold. The dependence of the lsv0 region on Fi

(green dashed line in Figure 5A,B) closely resembles that of the

lv0 region on F (white dashed lines in Figure 5A,B). We

therefore conclude that an environment that supports repeated

starvation processes with an initial F above this boundary for a

given c promotes evolution that lowers c. It is worthwhile to note

that this conclusion was reached without invoking any significant

simplifying assumptions other than the experimentally character-

ized kinetics of nonenzymatic replication (Table 1), thermody-

namic considerations, and the quasispecies theory, except the

uncertainty in values of F0. We verified that the conclusion

remains valid for all possible F0 (Figure 11).

Evolution of longer genomes
The conclusion that there was an underlying driving force

biasing fidelity increases in the absence of genomes is particularly

powerful because it is independent of the physical mechanisms

implementing it. A likely mechanism for such changes is the

evolution of error correction with the necessary increases in

genome length M. The Eigen’s paradox arises because such an

increase would lower m�2 (the melting line recedes toward smaller c
in Figure 5A,B). The melted population, however, would be driven

to recrystallize a new, longer genome because lv0 in the L phase.

Growths in genome lengths most likely occurred with insertions,

which is beyond the scope of our treatment that only considered

base substitution errors. Saakian has studied the evolutionary

model of parallel mutation-selection scheme with insertion and

deletion [61]. Similar approaches combined with our findings may

offer more detailed insights on how genome growths may have

been facilitated by thermodynamic driving forces. In addition, we

have restricted our study here to a single chemical system (RNAs).

It would be of interest to apply similar approaches to more

complex systems containing multiple ingredients, including

peptides.

Together, our findings in Figure 5 suggest that the initial

nonenzymatic fidelity of RNA lies within the threshold favoring

fidelity increases. Rather than being coincidental, this feature may

explain nature’s choice of NTPs as the media for encoding

biological information. Many possible alternative oligomers

capable of templated replications have been proposed as

precursors to RNAs [7]. Their corresponding monomers, howev-

er, would have had widely different fidelity values, and one system

(NTPs) that happened to lie within the lv0 boundary presumably

evolved the RNA quasispecies cloud towards smaller c, eventually

crystallizing the first genomes.

Methods

Thermodynamic force
An elementary elongation reaction can be written as

Rnza'Rnz1, ð26Þ

where a~A,U,G,C and Rn is the RNA primer of length n. The

entropy of the system plus reservoir is S~S(n,Na,Np), where Na

and Np are the total numbers of monomers a and PPi,

respectively. The entropy production rate is [34,52]

_SS~
LS

Ln
_nnz
X

a

LS

LNa

_NNaz
LS

LNp

_NNp

~
1

T
(f {mp)nz

X
a

mana

" #
~
X

a

Fana,

ð27Þ

where f ~TLS=Ln is the force acting on the growing primer (in

length units of e.g., base pair rise), mp~{TLS=LNp,

Figure 10. Variation of mean fitness during starvation
processes. The mean fitness is shown as a function of fractional
population size j. The two c values (with Fi~1 and F0~5) illustrate
typical behavior below and above the critical point. The C-L and L-G
transitions are indicated for the subcritical case.
doi:10.1371/journal.pcbi.1002534.g010

Figure 11. Sensitivity of fidelity threshold on equilibrium
constant. The dependence on F0 of the minimum Fi of starvation
processes, for which ls~LSngT=Lcv0, are shown.
doi:10.1371/journal.pcbi.1002534.g011
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ma~{TLS=LNa, n~ _nn~ _NNp~
P

a na, na~{ _NNa is the consump-

tion rate of nucleotide a. The force f is analogous to the external

tension balancing the entropic force of rubber elasticity [52]. In

conditions where the external force is not controlled, it may be

replaced by frictional drag on polymerases, which would depend

on elongation velocity. The constant Fa is given by

Fa~T{1 f{mpzma

� �
~F 0

azln
½a�
½PPi� F̂ 0{ln 4zln

½NTP�
½PPi� :F :ð28Þ

In Eq. (28), F 0
a~T{1(f {m0

pzm0
a)^F 0, and in the third equality,

we have assumed that ½a�~½NTP�=4. Equation (1) follows with

F0~F 0{ ln 4, and Eq. (32) becomes _SS~Fn.

Equilibrium condition
A useful physical insight to g defined in Eq. (9) can be gained by

considering the condition of equilibrium, which can be derived

from Eq. (7) as

qeq(aDb)~egeq(aDb), ð29Þ

or with Eq. (8), kz(aDb)~k{(aDb)qeq(aDb), the detailed balance. In

equilibrium, on the other hand, we can calculate qeq by

considering a two-level system with a ground state and m{1-

fold degenerate excited states with energy gap DDG (m is the total

number of NTP types; m~4 in the main text):

qeq(aDb)~
da,b�z(1{da,b� )e{DDG=kBT

1z(m{1)e{DDG=kBT
~

1zda,b� (g{1)

m{1zg
: ð30Þ

Comparing this with Eqs. (9) and (29), we obtain

geq~{ ln 1z
m{1

g

� �
, ð31Þ

which we also verify in the next subsection directly from the mean

field theory. We may interpret m{1 and g in Eq. (31) as the

entropic and energetic factors for mismatches: they are costly

individually (by a factor of g) but there are many of them (mw1).

Equation (29) shows that the free energy parameter g is defined

with a constant term such that it absorbs the partition function that

normalizes qeq(aDb) in equilibrium. The mean field theory

generalizes Eq. (29) into Eqs. (5a) and (8) for nonequilibrium

conditions.

Mean field theory of RNA replication
Previously, we derived a mean field theory for the templated

replication and showed with numerical tests that it was exact for

the two-parameter Jukes-Cantor model rates [34]. Here, we

reproduce the analytical derivation and expand it to show that the

mean field theory becomes exact for symmetric template models

(i.e., four-parameter models with the set of kz(aDb) for all a
independent of the identity of b), of which the Jukes-Cantor model

is a special case. We also test this conclusion by comparing the

analytical results with numerical simulations (Figure 3). The

particular version of the mean field theory we adopted for general

rates in this paper [Eq. (5)] can then be considered as a

generalization of these expressions.

Considering the elongation of RNA depicted in Figure 1A, the

master equation for the probability Pn(anDbn) to have a chain with

length n and sequence an:fa1, � � � ,ang under a template b
(assumed infinitely long; may refer to the whole template sequence

or a single base) can be written as

d

dt
Pn(an,tjb)~kz(anjbn)Pn{1(an{1,tjb)

z
X

a
0

k{(a
0 jbnz1)Pnz1(a

0
an,tjb){k{(anjbn)Pn(an,tjb)

{
X

a
0

kz(a
0 jbnz1)Pn(an,tjb),

ð32Þ

where a,b~1,2, � � � ,m (m~4 and a,b~fA,U,G,Cg in the main

text). We introduce the reduced distribution [32]

P(l)
n (anan{1 � � � an{lz1,tjb)~

X
faig,iƒn{l

Pn(an,tjb)

:pn(tjb)q(an � � � an{lz1jb),

ð33Þ

where pn(tDb) is the probability to find the chain with length n at

time t under the given template b, and q is the conditional

probability of having the indicated sequence for the given chain of

length n. In writing q as time independent, we have implicitly

assumed the stationary limit where q represents the asymptotic

monomer distributions near the terminus of the growing chain.

Our numerical simulations confirm the existence of such

distributions for l~1. Conversely, the chain length distribution

pn(tDb) supports a peak, SnT~
P

n npn(tDb), moving with a

constant velocity, n~
P

n ndpn(tDb)=dt, which depends on the

entire template sequence b in general.

A special case of particular interest is the symmetric template

models, for which the set of rates would be specified completely by

at most m parameters instead of m2. The simplest example is the

two-parameter model [34] given in Eq. (4). For such models, we

may write

pn(tDb)~pn(t): ð34Þ

The physical interpretation behind Eq. (34) is that the monomer

addition and deletion at the n’th site on the template are solely

determined by the set of rates kz(anDbn), which are independent

of the identity of bn. The probability for chain growth, therefore,

should be independent of template sequences. We also assume

that

q(a
0
aDb
0
b)~q(a

0
Db
0
)q(aDb), ð35Þ

which is expected because the rates k+(aDb) are all local in their

dependence on nucleotides. Numerical tests suggest that Eq. (35)

is generally valid for arbitrary rate constants (Figure 3B).

Using Eqs. (34), (35) and summing both sides of Eq. (32) over

ai (i~1, � � � ,n{1), we have

_ppn q(anjbn)~kz(anjbn)pn{1z

J{ pnz1{Jzpn{k{(anjbn)pn½ �q(anjbn),
ð36Þ

where

Jz~
X

a

kz(aDb), ð37aÞ
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J{~
X

a

k{(aDb)q(aDb), ð37bÞ

are the total fluxes for chain growth and shrinkage. Any expression

involving summations over a of kz(aDb) is independent of b for

symmetric template models.

Equation (36) is valid for any fan,bng, which we replace by

fa,bg. We note that
P

n pn~1,
P

n _ppn~0, and
P

n n _ppn~n. If we

sum both sides of Eq. (36) over a using
P

a q(aDb)~1, multiply by

n, and sum over n, we get

n~Jz
X

n

npn{1{ JzzJ{ð Þ
X

n

npnzJ{
X

n

npnz1

~
X

n

(nz1)Jz{n(JzzJ{)z(n{1)J{½ �pn~Jz{J{:
ð38Þ

If we sum both sides of Eq. (36) with respect to n,

0~kz(aDb)z J{{k{(aDb){Jz½ �q(aDb), ð39Þ

or with Eq. (38),

q(aDb)~
kz(aDb)

nzk{(aDb)
: ð40Þ

Equations (37b), (38), (40), and
P

a q(aDb)~1 which was used in

the derivation, form a set of self-consistent equations for q(aDb)
[mz2 equations, m copies of Eq. (40), the normalization, and Eq.

(37b); for mz2 unknown, q(aDb), n, and J{]. Because n is

independent of b, this set of equations is most conveniently solved

by imposing the normalization condition to Eq. (40) to determine

n:

1~
X

a

kz(aDb)

nzk{(aDb)
: ð41Þ

We note that Eq. (41) leads to a unique n independent of b because

of the symmetry of rates with respect to b. The mean error rate is

given by

m~
X

a=b�
q(aDb), ð42Þ

again independent of b. In Figure 3A, we test Eqs. (40) and (41)

with an example set of symmetric template model rates. The

comparison with numerical simulations shows that the expressions

are exact for symmetric template models. We also tested the

factorization assumption, Eq. (35), for the general case (pol b
kinetics, Table 2) in Figure 3B, which suggests that it is generally

valid.

Without the symmetry of kinetic rates with respect to template

base identity, the main difficulty in the analytical treatment is that

Eq. (34) is no longer valid, and the velocity n depends on the entire

template sequence. There are a number of ways to generalize the

exact expressions, Eqs. (40) and (41), into cases where the kinetic

rates do depend on the identity of template bases. One way,

demonstrated in Ref. [34], is to introduce averages over template

bases to Eq. (36) to symmetrize q(aDb) and n over the distribution

of b. An average over b of the right hand side of Eq. (41)

determines the mean velocity n independent of b (Eq. (12) of Ref.

[34]). Here, we used a different approach, generalizing Eq. (40)

into Eq. (5a), which introduces a template-dependent velocity n(b).
We found this mean field theory to give better agreements with

simulations for asymmetric rates especially when combined with

averages over b defined as the harmonic mean, i.e., Eq. (3).

Because harmonic means are not additive, the summation must

precede the average in Eq. (5d) within the current approach.

Equation (5) becomes exact for symmetric template models.

In applying the mean field theory expressions, all forward rates

are first scaled with k [kz(aDb)?kz(aDb)~kz(aDb)=k], and Eq.

(41) is solved for each b to find n(b). Although it is a quartic

equation with respect to n(b), there was always only one solution

for 0vn(b)v1. The mean velocity n, error rate m, and

thermodynamic force F then follows from Eqs. (5c), (5d), and

(7). The dependence of n and m on F are obtained by treating g as

a parameter to be eliminated (Figure 3) [62].

Limiting behavior of elongation properties
Equilibrium is reached when n~0 and F~0, which occurs

when n(b)~0 for all b: from Eqs. (5a), (8), and (9), we verify Eqs.

(29) and (31), and the maximum error rate is

mmax~
m{1

m{1zg
, ð43Þ

which would be equal to 3/4 if g~1 and m~4. Far from

equilibrium, where F??, g~? and k{(aDb)~0, Eqs. (5a) and

(41) give n(b)?
P

a kz(aDb):nmax(b) and n?nmax:k, where k is

given by Eq. (2a). The error rate in this limit approaches its lower

bound,

mmin~

P
a=b� kz(aDb)P

a kz(aDb)
b

:(m{1)c, ð44Þ

which defines the inverse fidelity parameter c via Eq. (2b). The

analogous limits of m2 can also be calculated from Eq. (6):

m2,min~
X
a=c

X
b

kz(aDb)kz(bDc)

nmax(b)nmax(c)
c

, ð45Þ

and

m2,max~
X
a=c

X
b

e½geq(ajb)zgeq(bjc)�

c

~(m{1) egeq
egeq

g
zegeq

egeq

g
z(m{2)egeq

egeq

g2

� �

~e2geq g{2(m{1)(2gzm{2)~
m{1

(m{1zg)2
(m{2z2g),

ð46Þ

where in the second equality in Eq. (46), the average over c was

omitted because g(aDb) is symmetric [Eq. (9)] and the three terms

in the square brackets correspond to a~b=c, a=b~c, and

a=b=c cases, respectively. For m~4, m2,max~3=4~mmax if

g~1, and m2,max~0:732 with g~1:73 (dotted red line in

Figure 5D).
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Stochastic simulation of single-molecule elongation
Numerical simulations of single-molecule RNA replication

kinetics were performed with the Gillespie algorithm [58] applied

to Eq. (32) [32]. A sufficiently long template sequence fbng was

pre-generated for the simulations using random sequences with

equal distributions u(b)~1=4. The initial condition was chosen as

n~0 (with rate constants assigned arbitrarily for nv2), and only

conditions that lead to positive velocities were considered. For a

given set of kz(aDb) [or k(aDb)~kz(aDb)=k], a value of g is

chosen, Eq. (8) is used to generate k{(aDb), and simulations are

run to obtain n~n=t, where n and t are the length of chain grown

and time elapsed, respectively. The error rates m and m2, and the

thermodynamic force F are obtained by first calculating q(aDb)
over the chain and using Eqs. (5d) and (7). This procedure is

repeated for different values of g to yield n and m2 as functions of

F . Typically, simulations were run up to t~108 k{1 and

properties were averaged over the entire chain grown. For

poliovirus 3Dpol, simuations were also performed using templates

generated by repeating the poliovirus sequence [63] (diamonds in

Figure 4B).

Stochastic simulation of evolutionary dynamics
In the stochastic form of the Eigen model given by Eqs. (23), the

total rate of transformation at a given time t is

a~
X

i

X
j

Qjirizr

 !
ni~2Nr, ð47Þ

where
P

i Qij~1 was used. In a simulation, a random number

0vz1v1 with a uniform distribution is drawn, and

Dt~
1

a
ln

1

z1

ð48Þ

determined the time tzDt of the next replication/degradation

event. A second random number 0vz2v1 was drawn next, which

chooses one (k, k~1, � � � ,2Ng ) of 2Ng reactions (Ng replications

and Ng degradations, where Ng is the total number of distinct

genotypes present within the population) from Eqs. (23) following

Ref. [58]:

Xk{1

l~1

alvaz2v

Xk

l~1

al , ð49Þ

where

ak~
rknk (1ƒkƒNg, replication),

rnk (Ngz1ƒkƒ2Ng, degradation):

�
ð50Þ

For a degradation event, the number of replicators is updated as

nk{Ng?nk{Ng{1. For a replication, a progeny genotype j is

produced from i~k by attempting to mutate each nucleotide into

3 different bases with probability mi=3, followed by the update

nj?njz1. Since the total number of possible genotypes 4M is

exponentially large for even moderate values of M, exact

enumerations of ni for all possible genotypes was avoided. Instead,

the simulation proceeded by first creating from the initial

distribution a list of genotypes for which niw0, and adding newly

encountered genotypes to the list as mutations occurred.

Test case for quasispecies dynamics
For testing the Gillespie simulation of RNA population

dynamics, we used the single-peak Eigen landscape (18) without

back-mutation, for which the quasispecies dynamics (15) can be

easily integrated. Although more advanced methods pioneered by

Saakian and coworkers [17,20–22,24] allow exact analyses of the

Eigen model, the following simple treatment suffices for our

purpose of testing numerical simulations because for moderately

large M, the effect of back-mutations become negligible. Writing a

vector n~½n1 n2�T , where n1 and n2 are the total numbers of

individuals with the master sequence and mutants, respectively,

and ignoring back-mutations, Eq. (15) can be written as

dn

dt
~R:n, ð51Þ

where

R~
qr1 0

(1{q)r1 r2

� �
, ð52Þ

and q~(1{m2)M . Diagonalizing R and integrating, we get

n(t)~eRt:n(0)~V:
el1t 0

0 el2t

" #
:V{1:n(0), ð53Þ

where l1~qr1 and l2~r2 are the two eigenvalues of R and V is

the eigenvector matrix. We then obtain the time-dependent master

sequence frequency p1~n1=(n1zn2),

p1(t)~
qA{1

A{1{(1{q)Ae(r2{q r1)t
: ð54Þ

Figures 7 and 8 test numerical simulations with Eq. (54) and its

stationary limit, p1(?)~(qA{1)=(A{1), respectively.

Starvation process
During an idealized starvation process, a single genotype is

placed inside a medium containing N (0)
m NTPs and N (0)

p PPi’s with

the corresponding initial thermodynamic force Fi. As replication

progresses, F decreases via

F~F0z ln
Nm

Np

~F0z ln
N (0)

m {MN

N
(0)
p zMN

ð55Þ

assuming rapid mixing, and N grows via _NN~rN. Equation (55)

can be solved for N to give

N~
N (0)

m {eF{F0 N (0)
p

(1zeF{F0 )M
: ð56Þ

Introducing the fractional population size j with respect to the

asymptotic population N? reached in the limit of equilibrium

(F?0),

j:
N

N?
~

1ze{F0ð Þ eFi {eFð Þ
eFi {1ð Þ 1zeF{F0ð Þ

, ð57Þ

or
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F~ ln
1ze{F0{j(1{e{Fi )

(1ze{F0 )e{Fizje{F0 (1{e{Fi )
: ð58Þ

Equation (58) with n~n(F ) and m~m(F ) give the dependence of

mean fitness on j during a starvation process with the initial

condition F~Fi. This procedure assumes that the early stages of

growth with finite N for which ng deviates from Eq. (19) make

negligible contributions. The mean fitness averaged over the

process is

SngT~
1

N?

XN?

N~1

ng(N)^
ð1

0

djng(j): ð59Þ

This integral was performed using trapezoidal rules to obtain

Figure 10.
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