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Summary

Sleep loss, which affects about one-third of the US population, can severely impair

physical and neurobehavioural performance. Although caffeine, the most widely

used stimulant in the world, can mitigate these effects, currently there are no tools

to guide the timing and amount of caffeine consumption to optimize its benefits. In

this work, we provide an optimization algorithm, suited for mobile computing plat-

forms, to determine when and how much caffeine to consume, so as to safely maxi-

mize neurobehavioural performance at the desired time of the day, under any sleep-

loss condition. The algorithm is based on our previously validated Unified Model of

Performance, which predicts the effect of caffeine consumption on a psychomotor

vigilance task. We assessed the algorithm by comparing the caffeine-dosing strate-

gies (timing and amount) it identified with the dosing strategies used in four experi-

mental studies, involving total and partial sleep loss. Through computer simulations,

we showed that the algorithm yielded caffeine-dosing strategies that enhanced per-

formance of the predicted psychomotor vigilance task by up to 64% while using the

same total amount of caffeine as in the original studies. In addition, the algorithm

identified strategies that resulted in equivalent performance to that in the experi-

mental studies while reducing caffeine consumption by up to 65%. Our work pro-

vides the first quantitative caffeine optimization tool for designing effective

strategies to maximize neurobehavioural performance and to avoid excessive caf-

feine consumption during any arbitrary sleep-loss condition.
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1 | INTRODUCTION

Sleep loss, which is a common stressor for both civilians and military

personnel, can severely impair cognitive and physical performance,

and thereby diminish productivity and compromise safety. Several

studies have demonstrated that, when safely used, caffeine can help

to sustain cognitive performance during prolonged periods of

restricted sleep (Doty et al., 2017; Kamimori et al., 2015; Killgore

et al., 2008; Mclellan, Bell, & Kamimori, 2004; Mclellan et al., 2005;

Wesensten, Killgore, & Balkin, 2005). However, these investigations

offer caffeine countermeasure guidance that is study-specific, and

which cannot be readily adaptable to any arbitrary sleep-loss condi-

tion. Providing a foundation for addressing this need, our group has

previously developed and validated a mathematical model, the
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unified model of performance (UMP), which can predict the effects of

sleep loss and caffeine, as a function of time of day, on objective mea-

sures of neurobehavioural performance (i.e. the psychomotor vigilance

task, PVT) across a wide range of sleep–wake schedules and caffeine

doses (Ramakrishnan et al., 2013, 2014, 2016). More recently, we

have built upon the UMP to develop the open-access Web tool 2B-

Alert (Reifman et al., 2016), a decision aid to help users design sleep

studies and work schedules, and the smartphone 2B-Alert app (Reif-

man et al., 2017) for real-time, individualized performance prediction

(Liu, Ramakrishnan, Laxminarayan, Balkin, & Reifman, 2017).

In this work, our goal was to develop a computational tool to pro-

vide, in real time, effective caffeine-dosing strategies for any arbitrary

sleep-loss condition. Once incorporated into a mobile computing

device, such a tool could provide customized caffeine-consumption

guidance to, for example, sustain the attention of sleep-deprived mili-

tary personnel. To this end, using the predictive ability of the UMP,

we formulated an optimization problem to determine when and how

much caffeine to consume, so as to safely maximize neurobehavioural

performance at the desired time of the day for the desired duration.

To solve this problem, we developed an efficient optimization algo-

rithm that was able to find near-optimal solutions in real time. We

assessed the optimization algorithm by comparing the effects of its

predicted caffeine-dosing (timing and amount) strategies with those

obtained in four experimental studies previously used to validate the

UMP (Ramakrishnan et al., 2016). In particular, we obtained caffeine-

dosing strategies that enhanced PVT performance while using the

same total amount of caffeine as in the original studies, and strategies

that yielded equivalent levels of performance as in the original studies

while reducing caffeine consumption.

2 | METHODS

2.1 | The unified model of performance

The UMP has two components. The first, based on Borb�ely’s two-

process model (Borbely, 1982), describes performance as a function

of the circadian cycle and a homeostatic process. The second is a

pharmacokinetic and pharmacodynamic model, which estimates the

caffeine level in the blood and predicts the duration and magnitude

of the effect of caffeine intake on neurobehavioural performance.

For a given sleep–wake schedule and caffeine consumption strategy,

which constitute the inputs to the model, the UMP predicts the PVT

mean response time (RT) for an ‘average’ individual. We refer the

reader to Ramakrishnan et al. (2016) for detailed descriptions of the

UMP, the parameter estimation process and model validation. We

have provided the UMP equations and parameter values in Section I

of the Supporting Information.

2.2 | Optimization problem

Our goal was to find a caffeine-dosing strategy that would minimize

neurobehavioural performance impairment based on the PVT for a

given sleep–wake schedule. To this end, we sought to minimize the

objective function Z (Equation 1, Table 1), which considers both the

area under the UMP-predicted PVT mean RT curve (AUCC) that is

above the baseline, and the worst performance (WPC) (i.e. the differ-

ence between the peak of the mean RT curve and the baseline) (Fig-

ure 1). As the baseline mean RT, we used the highest predicted

value of mean RT when an average individual has no sleep debt,

wakes up at 07:00 and is awake for 16 hr. We normalized AUCC and

WPC by the corresponding values for the predicted mean RT curve

without caffeine consumption, AUCNC and WPNC, respectively. In

addition, we included a penalty term in Z to limit the accumulation

of caffeine in the blood [C(ti, Di)], which could result in unsafe con-

sumption (Killgore et al., 2008). This term penalizes Z when the max-

imum level of caffeine in the blood is higher than the maximum level

(Cmax) achieved by a single 400-mg dose (Institute of Medicine,

2001). (Note that the value of Cmax can be readily changed in the

algorithm.) Hence, without considering the penalty term, Z varies

from 0 (for a strategy that consistently maintains the mean RT below

the baseline) to 100 (for a strategy that is no better than using no

caffeine). Therefore, the smaller the value of Z, the better is the dos-

ing strategy.

The optimization variables were the time (ti) and caffeine amount

(Di) of dose i, with i = 1, 2, . . ., n (the number of doses used in the

strategy). To obtain solutions in a practical computational time, we

imposed the following constraints on the optimization variables

(Table 1): (i) Di was restricted to 100, 200 or 300 mg of caffeine

(Equation 2); (ii) the dosing time was restricted to occur on the hour

(e.g. 18:00, 22:00 and 24:00) (Equation 3); and (iii) the minimum time

between doses was 2 hr (Equation 4). Equation 4 excluded strategies

that prescribe doses too often, which could be too burdensome to

follow in practice. We also included two additional constraints to

obtain solutions with a desired total amount of caffeine (Equation 5)

or number of doses (Equation 6). The objective function Z in Equa-

tion 1 is a nonlinear function of ti and Di, which in turn are discrete

variables. Thus, the optimization problem is a mixed integer nonlin-

ear problem (MINLP).

2.3 | Tabu search algorithm

Standard algorithms for solving MINLPs (i.e. branch-and-bound and

simulated annealing) were not able to solve the optimization problem

in Table 1 in a reasonable computational time (see Section II of the

Supporting Information). To address this issue, we sought an approx-

imate solution using the tabu search algorithm (Glover, 1986). The

tabu search algorithm finds an optimal solution by evaluating the

objective function Z at a number of test points in the neighbourhood

of a current solution and moving to the next tested point with the

best solution. The key feature of the algorithm is how to select the

next testing points. Although the selection of a large set of testing

points may produce better results, this comes at the cost of higher

computational times.

We developed the following scheme to implement the algorithm

(Figure 2a). First, for a given current solution, we divided the entire

sleep–wake schedule into periods of time between doses. For each
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period, we computed the value of Z using the UMP, and selected

the period with the worst value (i.e. largest) (Figure 2b). Then, if the

sum of the first and second terms in Equation 1 was larger than the

third term, we evaluated eight test points to reduce the perfor-

mance impairment for the period; otherwise, we evaluated four test

points to reduce the caffeine level (Figure 2c). Then, we selected

the point with the smallest overall Z (i.e. for the entire sleep–wake

schedule) as the current solution (Figure 2D) and repeated the pro-

cess. We marked all of the points that had been selected as the

current solution as ‘tabu’ to avoid these points in subsequent itera-

tions. The algorithm stopped when either a prespecified number of

iterations was reached or no more feasible solutions were left. In

this work, we selected the number of iterations to be 2000, as a

compromise between the optimality of the solution and the compu-

tational time.

2.4 | Laboratory and field studies

Figure 3 schematically shows the sleep–wake schedules and the caf-

feine-dosing strategies for four studies used by Ramakrishnan et al.

(2016) to validate the UMP. Here, we revisited these studies to

demonstrate the benefit of the proposed algorithm. The studies

investigated the effect of caffeine on group-average performance

during chronic sleep restriction (CSR; Study 1 [Doty et al., 2017; ]),

total sleep deprivation (TSD; Study 4 [Mclellan et al., 2004; ]) or a

combination of both (Studies 2 and 3 [Kamimori et al., 2015; Mclel-

lan et al., 2005; ]). For additional details on these studies, we refer

the reader to Ramakrishnan et al. (2016).

3 | RESULTS

3.1 | Two optimization problems: enhancing
neurobehavioural performance and reducing caffeine
consumption

For each of the sleep–wake schedules used in Studies 1 to 4, we

obtained dosing strategies that minimized performance impairment (Z)

for a range of values of total amount of caffeine (i.e. we solved the

MINLP in Table 1 for different values of DT in Equation 5). Figure 4

shows the UMP-predicted performance impairment for both the opti-

mal (blue circles) and the original dosing strategies (orange diamonds).

From these results, we focused on two types of solutions. The first

involved strategies for enhancing neurobehavioural performance using

the same total amount of caffeine as in the original studies (Figure 4,

TABLE 1 Optimization problem to find a caffeine-dosing strategy that minimizes neurobehavioural performance impairment

Objective function:

min
ti;Di

Z ¼ 50
AUCCðti;DiÞ

AUCNC
þ 50

WPCðti;DiÞ
WPNC

þ 250maxfCðti;DiÞ � Cmax;0g (1)

where Z denotes the objective function that we wish to minimize. The optimization variables ti and Di represent the time (in hours after the

first wake-up time in the schedule) and the caffeine amount (in mg) of dose i, respectively, with i = 1, 2, . . ., n (the number of doses). AUC

denotes the area under the PVT mean response time (RT) curve above the baseline, and WP the difference between the peak of the mean

RT curve and the baseline. C(ti, Di) denotes the level of caffeine in the blood. The subscripts C and NC denote caffeine and no caffeine,

respectively. The last term penalizes the objective function when the maximum value of C(ti, Di) is higher than the maximum caffeine level

achieved by a single dose of 400 mg, denoted by Cmax.

Constraints:

Allowed doses:

Di 2{100, 200, 300} (2)

Allowed dosing times:

ti 2{1, 2, . . ., tf} (3)

where tf is the total number of hours in the sleep–wake schedule.

Time between doses:

ti+1 – ti ≥ 2, for i 2{1, 2, . . ., n – 1} (4)

Total amount of caffeine:

X
i
Di �DT (5)

where DT denotes the maximum total caffeine intake. Note that, in this constraint, the inequality symbol can be replaced by the equality

symbol.

Total number of doses:

n ≤ nT (6)

where nT denotes the maximum number of doses. Note that, in this constraint, the inequality symbol can be replaced by the equality symbol.
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red arrows). The second type involved strategies that attempt to

reduce caffeine consumption while achieving at least the same benefit

as the original studies (i.e. a value of Z equal to or smaller than that of

the original study) (Figure 4, green arrows).

3.2 | Enhancing neurobehavioural performance

Figure 5 shows the experimental mean RT data (orange dots with

standard error bars) for each study (Doty et al., 2017; Kamimori

et al., 2015; Mclellan et al., 2004, 2005), as well as the UMP-

predicted mean RT profiles for the original studies (dashed orange

lines) and the optimal dosing strategies (blue lines) that attempted to

enhance neurobehavioural performance, using the same total amount

of caffeine as in the original studies (Figure 4, red arrows). Overall,

the UMP satisfactorily predicted the mean RT for the original studies

(i.e. the relative root mean squared error for the four studies ranged

from 6% to 17%) (Ramakrishnan et al., 2016). Table 2 summarizes

the changes in neurobehavioural performance for the optimal strate-

gies. The optimal strategies using the same amount of caffeine

showed substantially better performance compared with the original

dosing strategies.

For Study 1, the major portion of the 64% improvement

(Table 2, column 5) was a result of the reduction of the worst peak

predicted daily for the original dosing strategy, which prescribed the

same total amount of caffeine (400 mg) at the same time each day

(Figure 5, orange arrows). In contrast, the optimal strategy prescribed

more caffeine on later days (with the exception of the last day),

owing to increasing sleep pressure, and allocated caffeine at the end

of each of the first 4 days of CSR (Figure 5, blue arrows). Moreover,

the optimal strategy did not prescribe caffeine early on the first day

of CSR because performance impairment was mitigated by sleep

banking (subjects spent 10 hr in bed on five previous nights) (Doty

et al., 2017).

In Study 2, the optimal strategy improved the effect of caffeine

by 48% (Table 2). In contrast to the original study, which prescribed

the same total amount of caffeine during each of the three periods

of wakefulness (Figure 5, orange arrows), the optimal strategy allo-

cated more caffeine during longer periods of wakefulness (Figure 5,

blue arrows; 900, 800 and 700 mg for the first, second and third

periods, respectively). Also, we predicted that the original study pre-

scribed the first dose earlier than needed in the second and third

periods, resulting in large performance impairment at the end of

each period. In the optimal strategy, the postponement of the first

dose in the second and third periods reduced and balanced the per-

formance impairment across the periods.

In Studies 3 and 4, the original countermeasures reduced perfor-

mance impairment more than did the optimal strategies near the

middle of the TSD challenge (i.e. the predicted mean RT for the orig-

inal studies was below the mean RT of the optimal strategies; Fig-

ure 5). However, performance impairment was substantially greater

for the original studies than for the optimal strategies during the last

6 hr of the TSD challenges. Overall, the optimal strategies improved

performance by 16% and 41% compared with the original counter-

measures for Studies 3 and 4, respectively (Table 2).

3.3 | Reducing caffeine consumption

Figure 6 shows the predicted mean RT profiles for the original stud-

ies (dashed orange line) and the optimal strategies (blue lines) that

attempted to reduce caffeine consumption, while achieving at least

the same benefit as the original studies (Figure 4, green arrows).

Table 2 (columns 6 and 7) shows the changes in caffeine con-

sumption for the optimal dosing strategies. In general, the optimal

F IGURE 1 Quantities used to define the objective function for
quantifying the benefits of different caffeine-dosing strategies. (a)
The graph shows the psychomotor vigilance task mean reaction time
(RT) predicted by the unified model of performance (UMP) for a 48-
hr total sleep deprivation challenge, for the cases of no caffeine
consumption (subscript NC) and an arbitrary caffeine-dosing strategy
(subscript C). AUC denotes the area under the curve above the
baseline, and WP the difference between the peak of the mean RT
curve and the baseline. The orange arrows at the top of the plot
indicate the time and amount of the caffeine doses for the arbitrary
dosing strategy. The small and large arrows represent 200- and 300-
mg doses, respectively. (b) UMP-predicted caffeine level in the blood
for the same arbitrary strategy. Cmax represents the maximum
acceptable caffeine level in the blood for a single 400-mg dose, and
Max C(ti, Di) denotes the predicted maximum caffeine level achieved
by the strategy over the entire period. The objective function Z
(Table 1, Equation 1) attempts to simultaneously minimize the
predicted area (AUCC) and peak (WPC), while constraining Max C(ti,
Di) below Cmax. The predicted AUCNC and WPNC for the no-caffeine
case are used to normalize Z
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strategies required less caffeine consumption than the original

studies.

For Study 1, the total amount of caffeine used in the optimal

strategy was only 700 mg (Figure 6, blue arrows), which was 65%

less than that used in the original study (Table 2, column 7), but still

yielded a slightly better performance (Z: 61 versus 64) than the

original. In Study 2, the optimal strategy used 500 mg (21%) less caf-

feine than did the original study (Table 2, column 7), with the major

caffeine savings occurring in the third wake period because it was

the shortest period (Figure 6).

The optimal strategies for Studies 3 and 4 reduced the total

amount of caffeine intake by 100 mg and 200 mg (17% and 33%),

F IGURE 2 Tabu search algorithm. (a) Implementation of the tabu search algorithm. We used the unified model of performance (UMP) to
compute the objective function value (Zj) for each period j formed by the times between the doses of the current solution. (b) We used an
arbitrary caffeine-dosing strategy as the current solution to illustrate the implementation of the algorithm. The diagram shows the periods
between doses and the values of Zj in the corresponding periods. Period 3 was the worst period (Zj = 47.0). (c) Psychomotor vigilance task
mean response time predicted by the UMP at the test points. The small, medium and large arrows at the top of each subplot represent 100-,
200- and 300-mg doses, respectively. The dotted lines indicate the dosing times for the current solution. We evaluated tests 1 to 8 (shaded in
blue) when the third term in Equation 1 was smaller than the sum of the first and second terms (Table 1); otherwise, we evaluated tests 9 to
12 (shaded in orange). (d) Objective function values at the test points for the entire sleep–wake schedule. Highlighted in grey are the best
tests for each of the two test sets
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respectively. In these strategies, performance at the end of the per-

iod improved at the expense of performance at earlier times (Fig-

ure 6).

4 | DISCUSSION

Caffeine, if safely administrated, is an effective countermeasure to

mitigate impairment of alertness caused by sleep loss. This has been

demonstrated in multiple laboratory and field studies for different

sleep–wake schedules. However, to maximize its effectiveness, caf-

feine should be consumed at the right time and amount. Here, we

developed an optimization algorithm to determine when and how

much caffeine to consume so as to safely maximize alertness of a

group of individuals for any situation. At the core of our algorithm is

the UMP, a validated mathematical model that accurately predicts

the effects of sleep–wake schedules and caffeine consumption (i.e.

the model inputs) on neurobehavioural (PVT) performance. In con-

junction with a new implementation of the tabu search algorithm,

the UMP allowed for the identification of near-optimal caffeine-dos-

ing strategies in a practical computational time (i.e. in seconds).

We used the algorithm to obtain optimal caffeine-dosing strate-

gies for different sleep–wake schedules that included TSD, CSR and

their combinations in four separate studies. For these studies, we

found strategies that yielded up to 64% greater performance

improvements than the original studies while using the same total

F IGURE 3 Schematic representations of caffeine dosing and
sleep schedules for the four studies used to assess the benefits of
the caffeine optimization algorithm. The grey and white areas
represent time in bed and time awake, respectively, where the
number in each area indicates the number of hours in that period.
Each arrow at the top of each schedule indicates the time and
amount of a dose

F IGURE 4 Objective function (Z) for optimal caffeine-dosing
strategies and for the original study. The graphs show the value of Z
for the optimal strategies using different amounts of total caffeine
intake (blue circles) and for the original studies (orange diamonds).
Red arrows indicate optimal strategies that enhanced
neurobehavioural performance using the same total amount of
caffeine as that in the original study. Green arrows indicate optimal
strategies that reduced caffeine dosing, while achieving at least the
same neurobehavioural performance as in the original studies
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amount of caffeine (Table 2, columns 4 and 5). The results showed

that the timing and amount of caffeine should be tailored to the par-

ticular situation to maximize its benefits (Figure 5). For example, in

Study 1, the sleep–wake schedule was the same for 5 days of CSR

(except the last day, when the wake period was shorter), gradually

accumulating sleep debt that led to increasing performance impair-

ment across the days of CSR. Accordingly, the optimal strategy allo-

cated more caffeine to days with higher sleep pressure. This is in

contrast to the original study, which repeated the same doses for

each of the five CSR days (Figure 5, compare blue and orange

arrows). Moreover, the timing of the doses in the original case

(08:00 and 12:00) could not prevent the predicted performance

impairment for the last 2 hr prior to sleep of the first four CSR days.

This impairment was mitigated in the optimal strategy by allocating

two doses close to the end of each day.

Recently, Doty et al. (2017) found that consumption of high

amounts of caffeine for several days of sleep restriction can impair

the recovery of an individual. Hence, dosing strategies that reduce

caffeine consumption can help to mitigate the negative effects of

caffeine on recovery. Thus, we obtained dosing strategies that

reduced caffeine consumption, while achieving at least the same

level of neurobehavioural performance as the original studies. For

the four studies, the optimal dosing strategies prescribed between

17% and 65% less caffeine than the original countermeasures.

One limitation of our optimization algorithm is that it does not

guarantee the identification of global solutions. Nonetheless, as illus-

trated in Section II of the Supporting Information, the algorithm

found strategies that were nearly as effective as those found by a

standard optimization algorithm (i.e. simulated annealing), albeit fas-

ter by at least two orders of magnitude. This reduction in computa-

tional time enables practical use of the algorithm. Another limitation

is that our algorithm does not account for the possibility that caf-

feine consumption before bedtime can reduce sleep quality in sub-

jects with regular sleep–wake schedules (Drake, Roehrs, Shambroom,

& Roth, 2013). Whether this has the same effect in sleep-deprived

individuals remains unclear. Nonetheless, by including additional con-

straints to the optimization problem, we can avoid strategies that

prescribe caffeine a number of hours before bedtime. For example,

in Study 1, by restricting caffeine consumption in the last 6 hr of

wakefulness, the optimal strategies were still able to reduce perfor-

mance impairment by 26% using the same total amount of caffeine

as the original countermeasure, and reduce caffeine consumption by

F IGURE 5 Optimal strategies to
enhance neurobehavioural performance
using the same total amount of caffeine as
in the original studies. The dashed orange
lines and the continuous blue lines
represent the unified model of
performance predictions of the
psychomotor vigilance task (PVT) mean
response time (RT) for the original study
and optimal strategies, respectively. The
orange dots and bars represent the
experimental PVT mean RT data and one
standard error, respectively. The orange
and blue arrows at the top of each plot
indicate the time and amount of the
caffeine doses for the original study and
optimal strategies, respectively. The
horizontal dashed lines indicate the
baseline and the grey vertical bars
represent time in bed. CSR, chronic sleep
restriction

TABLE 2 Effects of optimal dosing strategies to enhance
neurobehavioural performance and reduce caffeine consumption

Study

Original
Enhanced
performancea

Reduced caffeineb

Total
caffeine, mg Z Zc Z

Total
caffeine, mgd

1 2,000 64 23 (64) 61 700 (65)

2 2,400 39 20 (48) 35 1,900 (21)

3 600 67 56 (16) 63 500 (17)

4 600 66 39 (41) 55 400 (33)

aThe strategies used the same total amount of caffeine as did the original

countermeasures.
bThe strategies achieved benefits that were at least as good as, if not

better than, those in the original studies.
cThe numbers in parentheses indicate the percentage improvement in Z

relative to the original studies.
dThe numbers in parentheses indicate the percentage reduction in caf-

feine consumption relative to the original studies.
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35% while achieving at least the same benefit as the original coun-

termeasure.

It should also be noted that the UMP was developed to predict

the effects of sleep loss and caffeine consumption on simple neu-

robehavioural tasks, such as the PVT. Because an individual’s perfor-

mance level in simple tasks may not reflect that individual’s

performance in other neurocognitive tasks (Rupp, Wesensten, &

Balkin, 2012; Van Dongen, Baynard, Maislin, & Dinges, 2004), the

computed caffeine strategies may be suboptimal for other tasks.

Doty et al. (2017) also found that the benefits of caffeine decrease

with accumulation of sleep debt (i.e. caffeine provides reduced bene-

fits after 4 days of 5 hr of sleep per night). However, the UMP does

not currently account for the effects of sleep debt on the benefits

of caffeine. Consequently, our algorithm’s strategies may potentially

overestimate neurobehavioural performance or underestimate the

amount of caffeine needed for long CSR scenarios. Moreover, the

UMP does not consider individual differences in sensitivity, or the

development of tolerance of caffeine, which could result in paradoxi-

cal effects. For example, the optimization algorithm could predict too

much caffeine for a caffeine-sensitive individual, which could lead to

extended sleep onset, reduced recovery sleep and increased caffeine

consumption. In contrast, individuals with low sensitivity to caffeine

may require considerably more caffeine than the amount prescribed

by the optimal dosing strategy for an average individual.

To assess the sensitivity of the UMP predictions to variability in

the model parameters, we carried out a sensitivity analysis by per-

forming 10,000 simulations. In each simulation, we simultaneously

selected different values for the 12 parameters in the model (i.e. by

uniformly sampling from within two standard errors of the nominal

values in Table S2), used those values in the model to predict the

PVT mean RT for the original caffeine strategy in Study 2, and com-

puted the percentage of predictions after the first dose that fell

within two standard errors of the experimental PVT mean RT (Kami-

mori et al., 2015). For the 10,000 simulations, this percentage was

66%. This means that, given the variability of the PVT data and the

uncertainties in the model parameters, ~66% of the UMP predictions

were statistically indistinguishable from the experimental data. This

was only slightly less than the percentage when using the nominal

parameter values, which was 75%. This result suggests that, although

not perfect, the UMP is robust to uncertainties in the model parame-

ters. Nonetheless, ultimately, to assess the effectiveness of caffeine-

dosing strategies proposed by the optimization algorithm, we will

need to carry out prospective experimental validation studies, where

we compare and contrast different strategies.

Another limitation is that the parameters of the UMP were esti-

mated to capture a ‘group-average’ response to sleep loss and caf-

feine consumption. However, there may be considerable individual

variability in both the response to sleep loss (Van Dongen et al.,

2004) and the restorative effects of caffeine (Ramakrishnan et al.,

2014). Variation in the effect of caffeine is, in part, a result of

genetic polymorphisms in the genes coding for the main caffeine-

metabolizing enzyme, P-450, and the main caffeine targets, adeno-

sine receptors A1 and A2A (Yang, Palmer, & De Wit, 2010). To assess

how well a group-average model captures individual differences, we

computed the root mean squared error (RMSE) between the model

predictions and the measured mean RT data from each subject after

caffeine consumption. For example, using the original caffeine strat-

egy for the 10 subjects in Study 2, the average RMSE was 56 ms

(range, 31 to 96 ms). In contrast, the RMSE between the group-aver-

age model predictions and the group-average data was 33 ms,

F IGURE 6 Optimal strategies to reduce
caffeine consumption dosing while
maintaining at least the same performance
as in the original studies. The dashed
orange lines and the continuous blue lines
represent the unified model of
performance predictions of the
psychomotor vigilance task (PVT) mean
response time (RT) for the original study
and optimal strategies, respectively. The
orange dots and bars represent the
experimental PVT mean RT data and one
standard error, respectively. The orange
and blue arrows at the top of each plot
indicate the time and amount of the
caffeine doses for the original study and
optimal strategies, respectively. The
horizontal dashed lines indicate the
baseline and the grey vertical bars
represent time in bed. CSR, chronic sleep
restriction
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suggesting that our group-average model captures the mean alert-

ness of the group better than it does that of each individual in the

group.

To further assess the suitability of using the group-average

model predictions for different subjects, we estimated how long the

prediction error remained within a given threshold of the nominal

parameter set predictions in the 10,000 simulations used for sensi-

tivity analysis. For this purpose, we assumed that the 10,000 ran-

dom parameter sets represented 10,000 individual subjects and

computed the prediction error as the absolute difference between

the mean RT predicted with the nominal parameter set and each of

the random parameter sets. Then, for each simulation, we deter-

mined the time (after the first caffeine dose) for which the predic-

tion error exceeded 25% of the mean RT predicted using the

nominal parameters. For 53% of the cases, the predicted mean RT

remained within 25% of the nominal mean RT predictions for the

entire time (i.e. for the 59.8 hr from the first caffeine dose until the

end of Study 2). For the remaining 47% of the cases, the average

time to exceed 25% error was 13.6 hr (range, 5 min to 59.6 hr). In

other words, for about half of the cases (representing ‘average-like’

subjects) the prediction error remained relatively small throughout

the duration of the study, whereas for the other half (representing

subjects highly vulnerable or resilient to sleep loss and/or highly sen-

sitive to or tolerant of caffeine), on average, the error considerably

increased after 13.6 hr. This result suggests that a group-average

model cannot always be used to obtain optimal caffeine strategies at

the individual level. Such inter-subject variability could be addressed

in the future by coupling the caffeine optimization algorithm with an

individualized prediction model (Liu et al., 2017) to provide tailored,

subject-specific interventions.

In summary, we developed an optimization algorithm for design-

ing safe and effective caffeine countermeasure strategies to mitigate

performance impairment for arbitrary sleep-loss conditions. The

unique capability of the proposed algorithm is that it combines a val-

idated mathematical model with optimization methods to determine

when and how much caffeine to consume to achieve peak perfor-

mance at the most needed times. As a next step, we plan to incor-

porate this algorithm into the open access 2B-Alert Web tool

(Reifman et al., 2016), allowing for optimized caffeine prescription in

the design of sleep studies and work schedules.
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