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Abstract
A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections

that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune

responses and have higher antibiotic tolerance than free-living planktonic cells. Developing

treatments against biofilms requires an understanding of bacterial biofilm-specific physio-

logical traits. Research efforts have started to elucidate the intricate mechanisms underlying

biofilm development. However, many aspects of these mechanisms are still poorly under-

stood. Here, we addressed questions regarding biofilm metabolism using a genome-scale

kinetic model of the P. aeruginosametabolic network and gene expression profiles. Specifi-

cally, we computed metabolite concentration differences between known mutants with

altered biofilm formation and the wild-type strain to predict drug targets against P. aerugi-
nosa biofilms. We also simulated the altered metabolism driven by gene expression

changes between biofilm and stationary growth-phase planktonic cultures. Our analysis

suggests that the synthesis of important biofilm-related molecules, such as the quorum-

sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regu-

lated not only through the expression of genes in their own synthesis pathway, but also

through the biofilm-specific expression of genes in pathways competing for precursors to

these molecules. Finally, we investigated why mutants defective in anthranilate degradation

have an impaired ability to form biofilms. Alternative to a previous hypothesis that this bio-

film reduction is caused by a decrease in energy production, we proposed that the dysregu-

lation of the synthesis of secondary metabolites derived from anthranilate and chorismate is

what impaired the biofilms of these mutants. Notably, these insights generated through our

kinetic model-based approach are not accessible from previous constraint-based model

analyses of P. aeruginosa biofilm metabolism. Our simulation results showed that plausible,

non-intuitive explanations of difficult-to-interpret experimental observations could be gener-

ated by integrating genome-scale kinetic models with gene expression profiles.
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Author Summary

Pseudomonas aeruginosa is one of the most frequently found bacterial pathogens in
patients with chronic infections, such as chronic wounds and cystic fibrosis. The persis-
tence of P. aeruginosa in these infections is enabled by its ability to form biofilms. Standard
antibiotic treatments, effective against bacteria living as single cells, are generally unsuc-
cessful against biofilms. Understanding the physiological adaptations of bacterial biofilms
will make it possible to design specific countermeasures and treatments for biofilm-based
persistent infections. In this study, we investigated mechanisms underlying biofilm forma-
tion using a genome-scale kinetic model of the P. aeruginosametabolic network and gene
expression profiles. Our analysis provides insights on how P. aeruginosa regulates its
metabolism to synthesize molecules that are important for biofilm formation. Based on
these insights, we predicted new enzymatic reactions that can be targeted to develop anti-
biofilm drugs. Notably, our approach can be used to characterize important metabolic
mechanisms and strategies adapted by pathogenic bacteria refractory to conventional anti-
biotic treatments.

Introduction
Pseudomonas aeruginosa is one of the most frequently found bacteria in chronic wounds and
in the lungs of cystic fibrosis patients, where its ability to create opportunistic infections is
potentiated by forming and maintaining biofilms [1]. Biofilms are communities of microorgan-
isms that sustain themselves in a self-produced matrix of biopolymers (e.g., DNA, proteins,
and polysaccharides) and exhibit a different physiology from that of planktonic (free-living)
cells. Bacterial biofilms are often involved in chronic infections, where they can elicit recurring
and persisting pathologies. Bacteria living in biofilms are less susceptible to the inflammatory
and immune responses of their host and are considerably more resistant to antibiotic treatment
than planktonic bacteria and, consequently, are more difficult to eradicate [1–3]. Thus, consid-
erable efforts have been directed towards understanding mechanisms of biofilm development.
Experimental analyses have identified several genetic components involved in initiation,
growth, and maturation of biofilms [4], antibiotic resistance [5], and evasion of the host
defenses [6] as contributing factors to the persistence of P. aeruginosa infections.

Hampering the understanding of the physiological differences and driving forces between
cells in bacterial biofilms and planktonic cells is that these systems are greatly dependent on
the experimental and environmental conditions of a particular study. Thus, it is not surprising
that there is little overlap among the sets of differentially expressed genes between biofilm and
planktonic cells of P. aeruginosa identified in different studies [7–11]. In order to consistently
interpret complex genomic and metabolic data across altered metabolic states associated with
biofilm formation, we need to use a systems biology approach that has the capacity to model
and account for metabolic capabilities emerging from the enzymatic ensemble encoded by a
bacterial genome [12–17]. Previous theoretical studies on P. aeruginosametabolism have used
the original genome-scale network construction [18] to interpret the time-evolving metabolic
states of P. aeruginosa in cystic fibrosis [13], to predict essential genes for biofilm formation
[19, 20], and as an exemplar system for simulating biofilm growth using agent-based models
[21]. The latter biofilm-related works rely mainly on biomass growth for the prediction of met-
abolic genes that are essential for biofilm formation. In particular, Sigurdsson et al. used flux
balance analysis (FBA) to predict genes essential for biomass growth under planktonic and bio-
film conditions [19]. However, this approach identified the same genes as essential under both
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planktonic and biofilm conditions; i.e., no essential genes were predicted to be specific for the
biofilm condition. As drug treatment is a potential inducer of biofilm formation, Xu et al. [20]
used a different approach to prioritize the FBA-predicted essential genes based on avoidance of
inducing biofilm formation. They gauged whether the inhibition of an essential gene would
increase the flux through reactions that had been determined experimentally to be associated
with P. aeruginosa biofilm formation [22], under the assumption that increased flux through
such reactions would induce biofilm formation. They determined that inhibition of the bulk
(132 out of 136) of the FBA-predicted essential genes would induce biofilm formation and,
therefore, only four of these genes could be considered as potential drug targets.

In order to address these limitations in both experimental interpretations and theoretical
studies, we developed an augmented genome-scale kinetic metabolic network model of P. aeru-
ginosa that incorporates all previous metabolic reactions, as well as biofilm-specific metabolic
pathways. This model allows for context-dependent modeling of the P. aeruginosametabolism
based on commensurate metabolic fluxes and gene expression data. We used the model to
address three questions regarding P. aeruginosametabolism under biofilm growth. First, we
defined a function based on predicted metabolite concentration changes to score the propen-
sity of inhibiting a reaction to reduce biofilm formation. This function partially incorporates
the complexity of biofilm regulation reflected in the diversity of experimentally determined
mutants with altered biofilm phenotype [22]. With the scoring function, we predicted 126 reac-
tion inhibitions that reduce biofilm formation. We further prioritized this list by selecting reac-
tions that were associated with mutants with decreased drug tolerance or attenuated virulence.

Then, we characterized metabolic fluxes and metabolite concentrations that were different
between the biofilm and planktonic phenotypes. For this purpose, we used the gene expression
profiles from Costaglioli et al. [11], which were obtained for biofilm and planktonic cultures
grown in similar conditions and had a number of mutants tested for biofilm formation based
on the hypothesis derived from the gene expression data. Our analysis of the metabolic net-
work model provided a means by which we could provide novel and alternative explanations
to the experimental results. For example, Costaglioli et al. [11] found only a few metabolic
genes up-regulated in P. aeruginosa biofilms compared to stationary growth-phase planktonic
cells (stationary cultures). These genes were mostly involved in the synthesis of the siderophore
pyochelin and the degradation of anthranilate, a precursor of the Pseudomonas quinolone sig-
nal (PQS) molecule. In addition to the expected increased anthranilate degradation and pyo-
chelin synthesis fluxes, we predicted that the synthesis of two biofilm-related molecules, PQS
and the exopolysaccharide Psl, was altered in biofilms compared to stationary cultures, even
though the expression of the genes associated with their synthesis did not significantly change.
Finally, we explored the effects of blocking anthranilate degradation in P. aeruginosa biofilms.
Costaglioli et al. [11] found that mutations of the genes involved in anthranilate degradation
reduce biofilm formation and hypothesized that this was caused by a reduction in energy pro-
duction. Our simulation results suggested that inhibition of anthranilate degradation had a
limited impact on energy production, but caused a considerable perturbation in the synthesis
of biofilm-related metabolites (including PQS). Thus, the metabolic network analysis pointed
to an alternative explanation in terms of altered synthesis of secondary metabolites, such as
PQS, as the primary cause of the reduction in biofilm formation.

Results and Discussion

Model construction and validation
We used our previously developed modeling framework [17] to construct a genome-scale con-
dition-specific kinetic model of the P. aeruginosametabolic network based on the metabolic
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network reconstruction developed by Oberhardt et al. [18]. We augmented the model by
including pathways of relevant biofilm-related molecules, including anthranilate, the exopoly-
saccharides Psl and Pel, pyochelin, and modified lipopolysaccharides. The model had 876
genes, 685 reactions, and 504 metabolites, all of which were active under the experimental con-
ditions considered [11]. The list of reactions and metabolites in the model is provided in S1
Supporting Information.

We provided the details for the derivation of the kinetic expressions in Materials and Meth-
ods and the kinetic model in S2 Supporting Information. An advantage of the proposed kinetic
expressions is that the model parameters, namely, a reference flux distribution and gene
expression ratios, can be directly derived or estimated from experimental data. In the present
study, we computed the gene expression ratios between biofilm and planktonic cultures from
the gene expression data from the study by Costaglioli et al. [11]. However, experimental mea-
surements (e.g., uptake and secretion rates of extracellular metabolites) to determine an accu-
rate reference flux distribution were not available. Thus, instead of using a single reference flux
distribution, we randomly sampled the space of feasible flux distributions to generate an
ensemble of reference flux distributions for each simulation condition, and then carried out the
simulations for each member of the ensemble (see Materials and Methods and S1 Text).
Although this parameter space is large, the mass balance, thermodynamic, and simulation con-
dition constraints considerably reduced the size of the parameter space. This allowed us to
obtain reproducible estimates of the distributions of the predicted metabolite concentration
and flux changes with a relatively small sample size (i.e., 100 random reference flux distribu-
tions), as we discussed in S1 Text.

Note that the proposed model, or any kinetic model, is valid only under reasonably small
changes in gene expression because the model parameters related to enzyme abundance are
fixed once they are estimated for a given condition (excepts for models that incorporate gene
regulatory networks, but such models are generally small). In our approach, we created a new
model to simulate other conditions with different gene expressions profiles by re-estimating
the related model parameters using gene expression data. Thus, in practice, we do not use a sin-
gle model to simulate the difference between stationary and biofilm cultures, but a specifically
parameterized model for each condition. For the simulations used to probe the inhibition of a
reaction, gene expression data were not available. Thus, we carried out these simulations
assuming constant gene expression levels and considered that the predicted response was
indicative of the actual response, which may involve large gene expression changes. Therefore,
we expect these simulations to be less accurate than the simulation of the metabolic differences
between stationary and biofilm cultures.

We validated the constructed kinetic model by predicting essential reactions that were over-
looked by FBA under exponential planktonic conditions. First, we predicted essential reactions
using FBA (S1 Table). The FBA-based approach yielded a sensitivity of 0.60 and an accuracy of
0.76 (see S1 Text), which were in line with previous FBA results of the P. aeruginosametabolic
network based on the inhibition of single genes instead of reactions [18, 19]. Next, we used the
kinetic model to simulate the effect of blocking the FBA-predicted non-essential reactions on
the biomass growth rate for exponential cultures (see Materials and Methods for simulation
details). Then, we ranked the reactions according to the change in the biomass growth rate
caused by their inhibition (the lower the biomass growth rate, the higher the rank). Six of the
predicted top 20 reactions were associated with genes that were in the set of experimentally
determined essential genes for biomass growth (referred to just as essential genes hereafter)
compiled by Sigurdsson et al. [19] (see S2 Table). The likelihood of randomly selecting six or
more out of 20 reactions associated with essential genes in the model is 0.04 (see S1 Text). This
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result shows that our approach was able to identify important reactions for biomass growth in
exponential cultures even if they were predicted to be non-essential by FBA.

Metabolite concentration changes indicative of biofilm formation
We tested different approaches to predict reactions whose inhibition would reduce biofilm for-
mation. Two of them were based on the effect of reaction inhibitions on the biomass growth
rate or on the synthesis rate of the major components of the P. aeruginosa biofilms (i.e., the
exopolysaccharides Psl and Pel, DNA, and proteins). We found that such approaches were not
good predictors of mutants with altered biofilm phenotype (see S1 Text). This result, together
with the observation that most of the experimentally determined mutants that have an altered
biofilm phenotype [22] were associated with reactions that do not have a direct or obvious
involvement in the synthesis of the major biofilm components, highlights the complexity of the
underlying physiology of biofilm formation. In order to partially consider this complexity, we
defined a scoring function based on the predicted metabolite concentration changes of known
mutants with altered biofilm phenotype [22].

The basic idea was to use a set of metabolic reactions known to be associated with genes that
either reduce or increase biofilm formation (S3 Table) [22] and link the predicted metabolite
concentration changes caused by the inhibition these reactions to biofilm formation. For sim-
plicity, we referred to the metabolic reactions associated with genes whose mutation reduced
or increased biofilm formation as biofilm-reducing or biofilm-increasing reactions, respec-
tively. The metabolites were classified in four sets according to the predicted concentration
changes. Sets 1 and 2 included metabolites that increased or decreased, respectively, when
inhibiting biofilm-reducing reactions, whereas sets 3 and 4 included metabolites that increased
or decreased, respectively, when inhibiting biofilm-increasing reactions. Then, for the inhibi-
tion of a metabolic reaction, the scoring function counts how many metabolite concentration
changes were common to the inhibition of biofilm-reducing and biofilm-increasing reactions.
If the inhibition of the reaction had more metabolite concentration changes in common with
the biofilm-reducing reactions than with the biofilm-increasing reactions, then inhibiting this
reaction was predicted to reduce biofilm formation, and vice versa. Note that for this analysis,
in addition to the non-essential reactions, we included the inhibition of essential reactions by
multiplying their reaction rate by a factor of 0.01. See Materials and Methods for a detailed
explanation of the scoring function and the metabolite sets and S1 Text for the validation of
this approach.

We added 15 additional low biofilm-producing mutants that we found in the literature [23–
25] (S4 Table) to the set identified by Musken et al. [22] to define the metabolite concentration
changes that were specific to the inhibition of either biofilm-reducing or biofilm-increasing
reactions. S5 Table lists the predicted metabolites for each set. We did not find evidence in the
literature to support the predicted metabolite sets, except for one case. Musken et al. [22] iden-
tified the low biofilm-producing mutant hutU (PA5100) and the high biofilm-producing
mutants hisC1 (PA4447), hisD (PA4448), hutH (PA5098), and PA0006. We predicted that uro-
canate was depleted in these high biofilm-producing mutants and accumulated in the hutU
mutant. Urocanate is an effector of the transcriptional regulator hutC that represses the tran-
scription of the hut genes, including itself. The protein hutC is bound to the promoters of the
hut genes when the concentration of urocanate is low, and it disassociates when urocanate
accumulates, freeing the promoters for transcription [26]. Thus, the transcription of hutC is
expected to be low in these high biofilm producers. This is in line with the high biofilm-pro-
ducing phenotype of a hutC transposon mutant reported by Yeung et al. [27], although the
mechanism by which hutCmutation promotes biofilm formation is unknown.
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The metabolites in sets 1 to 4 were scattered across the metabolic network. Of the 95 meta-
bolic pathways in the model (as defined in the KEGG database, http://www.genome.jp/kegg/),
73 pathways included at least one metabolite. However, some pathways had a relatively high
number of these metabolites; S6 Table lists the metabolic pathways with five or more metabo-
lites from each metabolite set. The metabolites whose concentration increased when inhibiting
biofilm-decreasing reactions (set 1) appeared in higher number in the pathways of valine,
leucine, and isoleucine degradation; arginine and proline metabolism; cysteine and methionine
metabolism; and glyoxylate and dicarboxylate metabolism. Fatty acid biosynthesis was the
only pathway with more than five metabolites whose concentration decreased when inhibiting
biofilm-reducing reactions (set 2), whereas the pentose phosphate pathway was the only one
with five or more metabolites whose concentration increased when inhibiting biofilm-increas-
ing reactions (set 3). The metabolites that decreased in biofilm-increasing reactions (set 4)
appeared more frequently in the pathways of cysteine and methionine metabolism; glycine,
serine, and threonine metabolism; and methane, pyruvate, and fatty acid metabolism.

We observed a considerable overlap between the sets of metabolites that increased when
inhibiting biofilm-reducing reactions (set 1) and decreased when inhibiting biofilm-increasing
reactions (set 4), sharing 26 metabolites. These 26 metabolites frequently appeared in the meth-
ane metabolism, fatty acid metabolism, glycolysis/gluconeogenesis, cysteine and methionine
metabolism, glyoxylate metabolism, and butanoate metabolism. We believe that these metabo-
lites are reasonable candidates for having a role in the regulation of biofilm formation and pro-
vide leads for further studies to understand the physiology of bacterial biofilms.

Predicted target reactions to reduce biofilm formation
We found 126 and 113 reactions whose inhibitions were predicted to decrease and increase
biofilm formation, respectively. S7 Table provides the complete lists of these reaction sets.
Reactions whose inhibition decreased biofilm formation frequently appeared in the fatty acid
biosynthesis pathway, arginine and proline metabolism, cysteine and methionine metabolism,
valine, leucine, and isoleucine degradation, and butanoate metabolism. In contrast, the reac-
tions that increased biofilm formation frequently appeared in the amino sugar and nucleotide
sugar metabolism, peptidoglycan biosynthesis, pentose phosphate pathway, purine metabo-
lism, and glycolysis/gluconeogenesis pathway.

Notably, the fatty acid biosynthesis pathway, cysteine and methionine metabolism, and
purine metabolism had more than five reactions whose inhibition decreased biofilm formation
and more than five reactions whose inhibition increased biofilm formation. This may explain
why knocking out the wrong component in a pathway may cause unexpected results even
when the pathway itself is obviously directly related to a given phenotype. For example, P. aeru-
ginosa can synthesize the purine precursor 5-phosphoribosyl-4-carbamoyl-5-aminoimidazole
(aicar) from 5-phosphoribosyl diphosphate by two alternative routes in the purine and histi-
dine synthesis pathways. We predicted that blocking the reactions in the histidine synthesis
pathway would increase biofilm formation, whereas inhibition of five and three reactions in
the purine synthesis pathway would decrease and increase biofilm formation, respectively
(Fig 1). In addition, of the four reactions involved in converting 5-phosphoribosyl-4-carba-
moyl-5-aminoimidazole (aicar) to adenylate (amp), we predicted that one would have no
effect, one would increase, and one would decrease biofilm formation. The fourth reaction
was associated with the gene PA3516, whose mutation is known to increase biofilm formation
[22]. Different effects for different targets in the same pathway have also been experimentally
observed. For instance, Musken et al. [22] identified that a mutation of hutU, which catalyzes
the second step in the histidine degradation pathway, decreased biofilm formation. Thus, one
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would expect that blocking histidine uptake (PA1257) or the first step of the histidine degrada-
tion pathway (hutH) would also decrease biofilm formation; however, they found the opposite
effect for these mutants (Fig 1).

The number of putative target reactions that reduce biofilm formation was relatively large
with 78 experimentally determined (S3 Table) and 126 predicted (S7 Table) targets. We further
reduced this set by filtering out reactions that were associated with genes whose mutations
were known to increase the tolerance to at least one antimicrobial or have human homologs
(see Materials and Methods). This resulted in a set of 56 putative target reactions against P. aer-
uginosa biofilm (S8 Table), 33 of which were predicted from our metabolic network analysis.
Two of these reactions were associated with reduced tolerance mutants to at least one antimi-
crobial and 11 reactions were associated with attenuated virulence mutants, making these tar-
gets attractive from a drug design perspective (Table 1). Note that we predicted target reactions
that would reduce biofilm formation and antimicrobial tolerance, properties that could not be
determined from the experimentally identified mutants alone. However, we did not identify
any target reaction that would simultaneously reduce biofilm formation, antimicrobial toler-
ance, and virulence.

Fig 1. Alteration of biofilm formation by different reaction inhibitions in the histidine and purine
synthesis pathways. Reactions indicated with magenta and cyan arrows were experimentally identified by
Musken et al. [22]. We predicted reactions indicated with red and green arrows. Abbreviations: aicar,
5-phosphoribosyl-4-carbamoyl-5-aminoimidazole; prpp, 5-phosphoribosyl diphosphate; amp, adenylate. See
S1 Supporting Information for the definition of the remaining of the abbreviations.

doi:10.1371/journal.pcbi.1004452.g001
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An extension of the present analysis would be to predict pairs or higher-order combinations
of reactions that simultaneously, but not separately, reduce biofilm formation. This would
allow us to probe potential redundancies in the cellular metabolism that relates to biofilm for-
mation. Computationally, this has been addressed using constraint-based methods to predict
synthetically lethal double deletion mutants [28, 29]. Performing a similar analysis using the
proposed kinetic models would require developing efficient methods to probe a large multidi-
mensional space, given the computational burden of evaluating the kinetic model. A potential
solution could be to use a constraint-based approach to create a list of promising pairs, triplets,
etc. of reactions and, then, use the kinetic model to refine the list.

Predicted metabolic differences between biofilm and planktonic
phenotypes
We investigated the metabolic flux and metabolite concentration differences between station-
ary and biofilm cultures of P. aeruginosa to increase the knowledge base of biofilm-specific
physiology. In particular, we focused on the experimental study carried out by Costaglioli
et al. [11], in which they analyzed gene expression profiles of planktonic and biofilm cultures
under similar conditions. We considered a metabolic flux or metabolite concentration to be
substantially different between the biofilm and planktonic cultures if its median change was
larger than two-fold, and if all the changes occurred in the same direction in all simulations
using the ensemble of reference flux distributions. Based on the simulation results, we pre-
dicted that 15 reactions had a considerable flux increase and nine reactions had a considerable
flux decrease in the biofilm conditions (Table 2). The increased-flux reactions were mainly
involved in the anthranilate degradation pathway, the pyochelin synthesis pathway, and the Psl

Table 1. Putative target reactions against biofilm that also would decrease antimicrobial tolerance or attenuate virulence.

Reaction name Reaction Genes Identification
methoda

Reduced antimicrobial tolerance

N-acetyl-g-glutamyl-phosphate
reductase

acg5sa + nadp + pi < = > acg5p + h + nadph argC P

Formimidoylglutamase forglu + h2o = > frmd + glu-L hutG or PA3175 P

Attenuated virulence

1,2-diacyl-sn-glycerol 3-phosphate
synthesis

1.02 2tocdACP + glyc3p + 0.26 hdeACP + 0.06 ocdACP + 0.66
palmACP = > 12dag3p_PA + 2 ACP

(plsY or plsX or plsB) and
(lptA or olsA)

E

Isochorismate Synthase chor = > ichor pchA E

Orotidine-5-phosphate
decarboxylase

h + orot5p = > co2 + ump pyrF E

Protoporphyrinogen oxidase 1.5 o2 + pppg9 = > 3 h2o + ppp9 hemY or hemK E

Arginine N-succinyltransferase arg-L + succoa = > sucarg + coa + h aruF and aruG E

1-hydroxyphenazine synthase h + nadh + o2 + pca = > 1hphe + co2 + h2o + nad phzS P

Phenazine-1-carboxylic acid
synthesis, step 1

chor + gln-L = > a4dic + glu-L phzE1 or phzE2 P

Phenazine-1-carboxylic acid
synthesis, step 2

a4dic + h2o = > dhha + h + pyr phzD1 or phzD2 P

Rhamnosyltransferase chain A 3hdeACP + coa = > 3hdccoa + ACP rhlA P

Isochorismate-pyruvate lyase ichor = > sal + pyr pchB P

Pyochelin synthesis pchDG salamp + cysamp = > hpthiazoline + 2 amp + h2o + h pchG and pchD P

a E, reaction associated with an experimentally determined mutant; P, predicted.

doi:10.1371/journal.pcbi.1004452.t001

Analysis of P. aeruginosa Biofilms via Metabolic Models

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004452 October 2, 2015 8 / 24



synthesis pathway, causing substantial increase in the flux through these pathways. In contrast,
of the nine decreased-flux reactions, only the two reactions associated with the genes pqsABCD
and pqsH appeared to have a functional effect (i.e., a reduced synthesis of PQS). The decreases
on the other reactions were compensated by increases in other neighboring reactions. We can

Table 2. Reactions with predicted median flux ratio change of at least 2-fold in biofilm cultures compared to stationary cultures.

Reaction name Reaction Genes GE
ratioa

Flux ratiob

Median Min. Max.

Down-regulated

HHQ synthesisc 3oxdeACP + anth + h = > ACP + co2
+ h2o + hhq

pqsABCD 0.60 0.47 0.33 0.79

Probable FAD-dependent monooxygenase
(PQS synthesis)c

fadh2 + hhq + o2 = > fad + h2o + pqs pqsH 0.99 0.47 0.33 0.79

Acyl-ACP:malonyl-ACP C-acyltransferase
(decarboxylating)

acACP + h + malACP = > ACP + actACP
+ co2

fabB or fabF1 or
PA5174

0.75 0.44 0.25 0.77

Glutamine transaminase glu-L + pydx5p = > akg + pyam5p glyA1 or glyA2 0.22 0.18 0.15 0.34

Alanine transaminase ala-L + pydx5p = > pyam5p + pyr glyA1 or glyA2 or
glyA3

0.37 0.29 0.24 0.57

3-deoxy-D-manno-octulosonic acid
transferase

PA_lipidA + ckdo = > PA_KDOlipidA + cmp
+ h

waaA 1.13 0.23 0.08 0.74

Phosphate transport via ABC system atp + h2o + pi[e] = > adp + h + 2 pi pstABCS 0.24 0.27 0.25 0.34

L-serine deaminase ser-L < = > nh4 + pyr sdaAB 0.45 0.28 0.09 0.43

O-succinylhomoserine lyase (H2S) h2s + suchms = > hcys-L + succ metZ 0.58 0.44 0.35 0.57

Up-regulated

Psl synthesisc 3 gdpman + udpg + dtdp6dm = > psl[e]
+ 3 gdp + udp + dtdp

pslACDEFGHIJKL 0.88 2.87 1.22 6.86

Anthranilate 1,2-dioxygenase anth + nadph + 2 h + o2 = > catechol + co2
+ nadp + nh3

antA 5.64 2.48 1.90 6.01

3-oxoadipyl-CoA thiolase coa + oxadpcoa = > accoa + succoa pcaF 1.93 2.06 1.32 3.24

Catechol 1,2-dioxygenase catechol + o2 = > muc catA 4.30 2.48 1.90 6.01

3-oxoadipate enol-lactonase 5odhf2a + h2o < = > 3oxadp + h pcaD 3.16 2.06 1.32 3.24

3-oxoadipate CoA-transferase 3oxadp + succoa < = > oxadpcoa + succ dhcAB 0.92 2.06 1.32 3.24

NAD(P) transhydrogenase 2 h[e] + nadh + nadp < = > 2 h + nad
+ nadph

pntAA and pntB 1.12 3.51 1.99 4.88

Isochorismate synthase chor = > ichor pchA 6.24 3.91 3.46 4.22

Isochorismate-pyruvate lyase ichor = > sal + pyr pchB 7.86 3.91 3.46 4.22

Pyochelin synthesis pchE cys-L + atp = > cysamp + ppi pchE 8.97 3.91 3.46 4.22

Pyochelin synthesis pchD sal + atp + h = > salamp + ppi pchD 3.30 3.91 3.46 4.22

Pyochelin synthesis pchDG salamp + cysamp = > hpthiazoline + 2 amp
+ h2o + h

pchDG 2.73 3.91 3.46 4.22

Pyochelin synthesis pchEF hpthiazoline + cysamp = > hpbthiazoline
+ amp + h2o + h

pchEF 3.86 3.91 3.46 4.22

Pyochelin synthesis pchGF hpbthiazoline + nadph + h = > dmpyochelin
+ nadp

pchGF 1.94 3.91 3.46 4.22

Pyochelin synthesis pchF dmpyochelin + amet + h2o = > pyochelin
+ ahcys + 3 h

pchF 1.66 3.91 3.46 4.22

a GE ratio, gene expression ratio between biofilm and stationary planktonic conditions.
b The median, minimum (Min.), and maximum (Max.) values of the flux ratio of each reaction in the set of simulations carried out using each member of

the ensemble of flux distributions.
c Biofilm-related reaction with considerable flux change but no significant gene expression changes.

doi:10.1371/journal.pcbi.1004452.t002
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derive several insights from these predictions. For instance, the predicted increased production
of the low affinity siderophore pyochelin, and the fact that the genes involved in the synthesis
of the high affinity siderophore pyoverdine were not differentially expressed, suggest that the
biofilm experienced a moderate iron starvation even though it was grown in the same medium
as the planktonic culture.

We predicted that the synthesis of two biofilm-related molecules would have a considerable
flux change without significant expression changes of the genes associated with the corre-
sponding enzymatic reactions. The production of PQS was reduced, while the synthesis of the
polysaccharide Psl was increased. PQS is a quorum-sensing signal that regulates the production
of virulence factors and biofilm development in a complex regulatory network with the N-acyl-
homoserine lactone-dependent quorum-sensing systems las and rhl [30]. Diggle et al. [31]
reported increased biofilm formation in P. aeruginosa cultures treated with exogenous PQS
after 72 h. Similarly, Guo et al. [32] reported that PQS promoted biofilm formation, but in
their experiments the enhancement occurred within the first hour of incubation, and the cul-
tures with and without exogenous PQS had similar biofilm formation rates from 1 to 24 h. This
observation, coupled with the observation that the genes involved in PQS synthesis were not
up-regulated in the biofilm, suggests that PQS may be more important at the early stages of
biofilm formation and that its synthesis is down-regulated as the biofilm matures. Moreover,
our simulation results indicated that further repression of PQS synthesis was achieved by
increasing anthranilate degradation. We investigated whether PQS is indeed down-regulated
as the biofilm matures, rather than as a consequence of the specific experimental condition in
the study by Costaglioli et al. [11]. To this end, we analyzed the expression of the PQS synthesis
genes (pqsABCDH) in all datasets available in the Gene Expression Omnibus (GEO) database
[33] for the wild-type PAO1 strain of P. aeruginosa growing in biofilm (see Materials and
Methods for details on processing the gene expression data). We found that there was a signifi-
cant negative correlation between the expression of the PQS synthesis genes and the biofilm
age (Fig 2).

Fig 2 also shows that the expression of the genes involved in the synthesis of Psl (psl genes)
and Pel (pel genes), the two major exopolysaccharides forming the extracellular matrix in bio-
films of the PAO1 strain [34], was correlated with the biofilm age, although with opposing
signs. This is consistent with the observation that P. aeruginosa strains produce predominantly
one polysaccharide at any given time [35]. But unexpectedly, the psl and pel genes were not up-
regulated in the biofilm compared with the stationary culture in the study by Costaglioli et al.
[11]. A possible explanation for this observation could be that most of the nutrients in the
medium have been consumed after 24 h and the synthesis of exopolysaccharides has been
stalled in both cultures. Nonetheless, our simulations predicted that there was an increase in
the synthesis rate of Psl (median flux ratio = 2.87, minimum flux ratio = 1.22) in the biofilm
with respect to the stationary culture. There was also an increase, although small, in the Pel
synthesis (median flux ratio = 1.53, minimum flux ratio = 1.32). To understand what caused
this result in our simulations, we evaluated the effect of the overall gene expression change of
each reaction on the predicted Psl synthesis rate (see Materials and Methods). We found that
the increase in Psl synthesis was mainly caused by the down-regulation of a few reactions in
pathways competing for Psl precursors. Fig 3A shows a sketch of the pathways associated with
the increase in the synthesis of Psl. This figure also shows the genes associated with the nine
reactions that had the highest effect on Psl production (the addition of more reactions did not
have a significant effect), as well as the predicted median flux ratios in simulations with or
without the gene expression changes of all of these genes. Psl production was increased by
down-regulating the genes of seven of these reactions (although only two of them, purD and
purF, by more than two-fold) and the other two reactions had a gene expression ratio only
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slightly higher than 1.0 (gcd and rmlA). Interestingly, the sensitivity of the nine reactions coin-
cided with the correlation between their gene expression and the expression of the Psl pathway
genes in the datasets obtained from the GEO database (Fig 3B). In other words, the gene expres-
sion of the reactions whose down-regulation increased Psl synthesis had a negative correlation
with the gene expression of the Psl pathway, whereas the reactions whose up-regulation
increased Psl synthesis had a positive correlation. Notably, with the exception of gcd (PA2290),
the opposite was observed in planktonic cultures: the gene expression of the reactions whose
down-regulation increased Psl synthesis had a positive correlation with the gene expression of
the Psl pathway, whereas the reactions whose up-regulation increased Psl synthesis had a nega-
tive correlation (Fig 3B). This result led to the hypothesis that P. aeruginosamay increase the
production of Psl (and possibly Pel) by not only regulating the genes in their synthesis pathways,
but by down-regulating pathways competing for Psl precursors in a biofilm-specific manner.

Importantly, the kinetic model-based analysis allowed us to make an enhanced interpreta-
tion of the gene expression data. Inspection of the gene expression data indicates that 18 of the
genes in the metabolic network were up-regulated and 30 down-regulated in the biofilm cul-
ture (S9 Table). One would infer that the 20 reactions associated with the up-regulated genes
have an increased flux, and the 36 reactions associated with the down-regulated genes have a

Fig 2. Expression of pqs, psl, and pel operons as a function of biofilm age. (A) Correlation coefficient of
the expression intensity of the genes in the pqs, psl, and pel operons and biofilm age (h). (B) Expression of
one gene from each operon as a function of biofilm age. Gene expressions are shown in log2 scale. Each dot
corresponds to one condition in the dataset of gene expression for P. aeruginosa PAO1 biofilms. The circles
correspond to the data obtained by Costaglioli et al. [11]. AU, arbitrary units; h, hours.

doi:10.1371/journal.pcbi.1004452.g002
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decreased flux. However, only nine and four of these reactions had a considerable flux increase or
decrease in our simulations, respectively (reactions with a gene expression ratio greater than 2.0
or lower than 0.5 in Table 2). Table 2 also shows that six increased-flux and five decreased-flux
reactions had an overall gene expression change less than two-fold. Thus, these reactions would
not have been identified based on gene expression analysis alone. Conversely, there were four
and eight reactions with overall gene expression ratios larger than 2.0 and smaller than 0.5,
respectively, but for which the predicted flux changes were moderate (S10 Table). We expect that
the predicted flux changes represent a better picture of the true metabolic changes than the

Fig 3. Coordinated regulation of Psl synthesis. (A) Sketch of the metabolic pathways involved in the
increase of Psl and Pel production rates in our simulations. The figure shows the genes associated with the
nine reactions that had the highest effect on Psl production. The number to the left of each gene name
denotes the rank of the corresponding reaction. The number in parentheses denotes the overall gene
expression ratio between the biofilm and the stationary cultures. The numbers to the left and right of the
vertical bar denote the median flux ratios of the reactions associated with the genes in simulation with or
without the gene expression ratios of the genes accABCD, fabD, purADF, pgl, edd, gcd, and rmlA. Only psl,
pel, and those genes whose regulation contributes to increasing Psl and Pel production are shown. (B)
Correlation between the expression of the genes that contribute to increasing Psl production and the psl
operon genes for biofilm and stationary cultures. Solid and dashed arrows indicate single and multiple
reaction steps in the model, respectively.

doi:10.1371/journal.pcbi.1004452.g003
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conclusions that one can draw using only the gene expression data. This claim is supported by
previous studies that demonstrated that metabolic network models combined with gene expres-
sion data are better predictors of metabolic flux changes than gene expression data alone [17, 36].

A critical aspect of biofilms that we have not explicitly accounted for is the progression of
biofilm formation. This analysis would require a consistent set of gene expression data at differ-
ent time points and measurements of metabolite concentration at the initial condition (i.e., the
reference condition). An alternative approach would be to examine the dynamics of biofilm
formation using aggregated time-dependent and averaged expression data from the datasets
available in the GEO database. We could then employ our modeling framework, under pseudo-
steady-state approximation, for each time point and construct a time-dependent solution. How-
ever, there are a number of assumptions and technical difficulties that would need to be resolved
before such a technique would be considered reliable enough to infer biofilm dynamics. For
instance, the gene expression data from the GEO database were collected under different condi-
tions related to time, temperature, medium, culture mode, chemical treatments, etc. All of these
conditions will, to some extent, influence the details of the biofilm formation analysis.

Dysregulation of secondary metabolites rather than energy shortage
may explain low biofilm formation in anthranilate degradation mutants
Costaglioli et al. reported that several genes in the anthranilate degradation pathway of P. aeru-
ginosa were up-regulated in biofilms compared to stationary cultures, and that the mutation of
such genes led to decreased biofilm formation [11]. They suggested that the decrease in biofilm
formation is caused by the inability of the mutants to use anthranilate as an energy source.
However, simulations inhibiting anthranilate degradation reactions predicted no decrease in
biomass growth rate (minimum relative growth rate = 1.0) or ATP concentration (minimum
relative ATP concentration = 0.94). Similarly, FBA simulations predicted that blocking anthra-
nilate degradation affects the optimal biomass growth rate only when tryptophan is the only
carbon source, a scenario that is unlikely to occur, because the biofilm cultures were grown in a
rich medium. Moreover, Brandenburg et al. [37] recently reported that tryptophan inhibits P.
aeruginosa biofilm formation. Thus, this suggests that the mechanism for biofilm reduction is
not directly related to a reduction of energy production.

Anthranilate is a key node in a complex pathway for the synthesis of several important sec-
ondary metabolites for P. aeruginosa physiology derived from chorismate and tryptophan
(Fig 4A). In simulations of the mutants that reduced biofilm formation in the study by Costa-
glioli et al. [11], concentrations of 19 metabolites changed by a factor of two or more in at least
one mutant (S11 Table). Of the altered metabolites, only tryptophan, formylkynurenine, and
kynurenine appeared in the set of metabolites with increased concentration in the low biofilm
producers (these mutants were used in the computation of the sets of metabolites associated
with the biofilm-reducing and biofilm-increasing reactions). Formylkynurenine and kynure-
nine are intermediate metabolites in the conversion of tryptophan to anthranilate through the
kynurenine pathway, and kynurenine is known to be an inducer of the genes (kynABU) in this
pathway [38]. Notably, the expression of kynABU correlated with the expression of genes
downstream of anthranilate and chorismate, as well as with psl genes, but had a negative corre-
lation with the pel genes in the dataset for P. aeruginosa biofilms (Fig 4B). Thus, we hypothe-
sized that kynurenine accumulation led to up-regulation of kynABU and increased flux to
anthranilate, which could not be degraded and, therefore, it was diverted to the synthesis of
other metabolites, such as PQS, pyocyanine, and hydroxyphenazine, altering the normal devel-
opment of the biofilm. This hypothesis is supported in part by a study by Oglesby et al. [39],
who demonstrated the link between the regulation of anthranilate degradation genes (antABC)
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and the synthesis of PQS by showing that the expression of antABC affected the production of
PQS, and that overexpression of pqsR (a quorum-sensing regulator co-induced by PQS) inhib-
ited antABC expression.

Conclusions
We have investigated the metabolism of P. aeruginosa under biofilm conditions using a
genome-scale kinetic model and gene expression profiles. Specifically, we identify potential tar-
get reactions to reduce biofilm formation using metabolite concentration changes predicted to
be specific for the inhibition of either biofilm-reducing or biofilm-increasing reactions, in con-
trast with previous modeling analysis that used biomass growth as a surrogate of biofilm for-
mation and failed to find biofilm-specific essential genes. We also predicted the metabolic
differences between biofilm and stationary cultures and hypothesized a mechanism for regulat-
ing the synthesis of important biofilm-related molecules, such as Psl and PQS. Finally, we pro-
posed a mechanistic explanation of why mutants defective in anthranilate degradation had a
reduced biofilm formation. Our simulation data showed that the predicted mechanisms for Psl
synthesis regulation and the effect of blocking anthranilate on biofilm formation had a subtle
connection with the co-expression of several of the involved genes. Thus, our work highlighted
how metabolic network analysis could generate non-intuitive hypotheses regarding poorly
understood mechanisms of biofilm development.

Materials and Methods

Metabolic network of P. aeruginosa
We constructed a kinetic model based on the metabolic network reconstruction of Oberhardt
et al. [18], with a number of modifications, as detailed in S1 Supporting Information. In

Fig 4. Dysregulation of secondary metabolites related to biofilm formation by inhibition of anthranilate degradation. (A) Sketch of the metabolic
pathways involved in anthranilate and chorismate metabolism. Metabolite names written in red were predicted to increase when the reactions marked with a
red x, which correspond to the low biofilm producers identified by Costaglioli et al. [11], were inhibited. (B) Correlation of the gene expression intensity of
genes associated with anthranilate- and chorismate-derived secondary metabolites, psl and pel genes, with the genes of the kynurenine pathway.

doi:10.1371/journal.pcbi.1004452.g004
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particular, we completed the anthranilate degradation and pyochelin synthesis, and modified
the lipopolysaccharide synthesis pathways, because these pathways are associated with genes
differentially expressed in biofilm cultures in the data from Costaglioli et al. [11]. We also
included the synthesis pathways for the major exopolysaccharides produced by the strain
PAO1, Psl and Pel [34]. For the simulated growth conditions, the modified model had 685
reactions associated with 876 genes and 504 metabolites.

Kinetic model
We used our previously developed modeling framework [17] to construct a genome-scale
kinetic model for the metabolic network of P. aeruginosa. Briefly, the constructed model can be
used to simulate a specific condition or to predict the metabolic fluxes and metabolite concen-
tration changes brought about by gene expression changes between two conditions: a reference
condition and the condition of interest. Assuming pseudo-steady-state conditions, the kinetic
model can be represented as

S � rðv; g; cÞ ¼ 0; ð1Þ
where S denotes the stoichiometric matrix of the metabolic network reconstruction, r repre-
sents the vector of reaction rates, v denotes the reference flux distribution, g represents the vec-
tor of gene expression ratios between the condition of interest and the reference condition, and
c represents the vector of normalized metabolite concentrations. Thus, the model requires two
sets of parameters, a flux distribution for one of the conditions and the gene expression ratios
between the two conditions (see below). For the kinetic expression, we used a particular case of
generalized mass action kinetics [40]. For a general irreversible reaction

X
i
aiAi !

X
j
bjBj; ð2Þ

we used the expression form

r ¼ vg

Y
i
½Ai�aiY
j
½Bj�bj

0
@

1
A ð3Þ

where ai and bj denote the stoichiometric coefficients of species Ai and Bj, respectively, r repre-
sents the reaction rate, the parameter v denotes the value of the reaction rate or flux through
the reaction at a reference condition, g represents the overall gene expression ratio (between a
condition of interest and a reference condition) of the genes associated with the reaction, and
the square brackets denote normalized metabolite concentrations. Note that we made the rate
of irreversible reactions a function of their products to allow metabolites downstream of an
irreversible reaction to have an effect on the flux through a pathway. In a living cell, these reac-
tions are under control of multiple biological and regulatory processes not included in the
model. The proposed kinetic expressions partially allow us to capture these processes; other-
wise, the flux through a pathway would depend only on the substrates and enzyme level of its
first irreversible reaction. We assumed that this scenario is not likely to occur in metabolic net-
works because enzyme level changes of downstream reactions would then not affect the flux
through the pathway. In fact, gene expression data clearly show differential gene expression
regulation of downstream reactions.

Similarly, for a general reversible reaction, we used the expression form

r ¼ gðvf
Y

i
½Ai�ai � vb

Y
j
½Bj�bjÞ; ð4Þ
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where vf and vb were determined as follows:

vf ¼ bv and vb ¼ ðb� 1Þv; if v > 0; ð5Þ

vf ¼ ðb� 1Þv and vb ¼ bv; if v < 0; ð6Þ
where β is a parameter that relates the rate of the forward and backward reactions to the overall
flux at the reference condition. The value of β depends on the equilibrium constant and on the
reactant’s concentration at the reference condition (see S1 Text). However, these data are gen-
erally not available as in the experiments analyzed here. Therefore, assuming that the model
behavior had a low sensitivity to individual βs, we took all βs to have the same value, except for
reactions in parallel pathways that must satisfy additional thermodynamic constraints as
detailed in Vital-Lopez et al. [17]. The lower limit of β is 1.0. A value of β close to 1.0 corre-
sponds to a reaction very far from the equilibrium, whereas a large value of β corresponds to
near-equilibrium reactions. We assumed that all reversible reactions are near equilibrium and
set β = 50 for reaction that do not participate in parallel pathways. The values of β for reactions
in parallel pathways are provided in S2 Supporting Information. The simulation results had
low sensitivity to β in the neighborhood of 50 (simulations with β = 30 or β = 100 produced
similar results; see S12 Table). The simulations become more sensitive to β as the parameter
approaches 1.0. Moreover, from practical experience, the model becomes unstable for values of
β close to 1.0. For example, 70% of the simulations fail to stay at steady state when simulating
the reference condition using β = 1.5. As we previously showed, approximating all βs to a single
relatively large value produced satisfactory results [17]. More details of the modeling frame-
work are provided in Vital-Lopez et al. [17].

Note that we could have included the concentration of products in the forward reactions
and the concentration of substrates in the backward reactions for the reversible reactions.
However, we decided not to include them because the simpler kinetic expressions already cap-
tured the effect of both substrates and products in the reaction rate.

In all analyses in this work, we simulated the model under the pseudo-steady-state assump-
tion. Under this assumption, we have previously shown that the proposed modeling framework
produced satisfactory results [17], even in the absence of alternative regulatory mechanisms
and with the coarse approximation for some model parameters, such as the reference flux dis-
tribution and β. In fact, our modeling approach outperformed the method proposed by Moxley
et al. [36], which incorporated known enzyme-metabolite interactions.

Thus, the proposed kinetic model has four sets of parameters, namely, the gene expression
ratios g, the reference flux distribution v, the exponent of the concentrations ai and bj, and the
βs. In this work, the gene expression ratios were directly computed from gene expression data.
We used an ensemble of random reference flux distributions, instead of a single flux distribu-
tion, to account for the lack of data to estimate an accurate flux distribution. The exponents of
the concentrations are stoichiometric coefficients of the metabolites of each reaction and are
directly taken from metabolic network model. As we mention above, with exception of the
reactions that participate in parallel pathways, we approximate all βs to a single value without
considerably affecting the simulation results. We provided all the parameter sets, including the
βs for reactions in parallel pathways, in S2 Supporting Information.

Gene expression data
We used the gene expression data obtained by Costaglioli et al. [11] to simulate the metabolic
changes in their experiments. We obtained the raw data with accession number GSE30021
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from the GEO database [33] and processed the data using the MATLAB (2011b, The Math-
Works Inc., Natick, MA) function affygcrma. We further smoothed the processed data to
reduced non-random systematic error. Briefly, for each microarray in the dataset, we computed
a correction factor for each gene such that the systematic deviations in the signal intensity of
each microarray with respect to the average signal intensity of the dataset were reduced. The
correction factor is equivalent to what is obtained using the MATLAB function malowess,
although we used an in-house-developed function (S1 Fig). For the analysis of gene expression
of multiple datasets of biofilm and planktonic cultures, we looked for microarray data in the
GEO database using the search term “Pseudomonas aeruginosa PAO1 [porgn:__txid208964].”
From the search results, we selected the microarray data that were associated with the wild-
type strain (e.g., no mutants), where cells were grown in biofilms or liquid planktonic cultures,
and the raw data (i.e., CEL files) were available. In addition, we included other datasets from
the literature that met the conditions mentioned above, but were not retrieved from the search
results (see S13 Table for the full list of the microarray data used). We processed these datasets
the same way as described above.

Reference flux distribution
Experimental measurements to determine the reference flux distribution for the exponential,
stationary, or biofilm cultures in the study by Costaglioli et al. [11] were not available. There-
fore, we randomly sampled the space of feasible flux distributions to generate ensembles of ref-
erence flux distributions, and then carried out the simulations on each member of the
ensemble. Briefly, we created two ensembles of 100 random reference flux distributions each
for the exponential and stationary cultures. First, we carried out a flux variability analysis to
compute the lower and upper bounds for each reaction. Then, we generated random flux vec-
tors that were contained within these bounds using Latin hypercube sampling [41]. Finally, for
each random flux vector, we computed a flux distribution that was as close as possible to the
random flux vector while satisfying the mass balance, thermodynamics, simulation condition
constrains (see S1 Text for details). For the exponential cultures, we assumed that the reference
flux distributions could have any uptake rates for the nutrients in the Luria-Bertani medium
and oxygen, as long as the biomass yield was at least 50% of the optimal biomass yield. We
computed optimal biomass yield for exponential cultures by minimizing the total carbon
uptake for a fixed biomass growth rate, without any restrictions in nutrients or oxygen uptake
rates. For the stationary cultures, the reference flux distributions were also constrained to have
a biomass yield of at least 50% of the optimal yield under the same conditions. We computed
the optimal biomass yield for stationary cultures in the same way that the exponential cultures,
but with two additional constrains. We restricted the oxygen consumption to 20% of the opti-
mal uptake rate for the exponential culture and the major carbon source to contribute no more
than 25% of the total used carbon (assuming that the preferred carbon source would be mainly
used during the exponential growth-phase).

Prediction of essential reactions using FBA
We predicted the effect of completely blocking each reaction on the biomass growth rate by
solving the following FBA problem:
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y

ybio

s:t:

S � y ¼ 0

y � l

y � u

yi ¼ 0;

ð7Þ

where S denotes the stoichiometric matrix of the metabolic network reconstruction, y repre-
sents the vector of fluxes, ybio and yi denote the biomass growth and the flux of the i-th reaction,
respectively, and l and u represent the vectors of the lower and upper flux bounds, respectively.
The lower and upper bounds are provided in the S2 Supporting Information. Note that we kept
the biomass composition constant in the FBA, whereas we allowed variations in the kinetic
model simulations. If constraining the flux of the i-th reaction to zero blocked the biomass
growth, then the reaction was considered FBA-predicted essential, otherwise, the reaction was
considered FBA-predicted non-essential.

Simulation of reaction inhibitions using the kinetic model
We simulated the effect of inhibiting a metabolic reaction under exponential and biofilm cul-
ture conditions. For both conditions, we obtained an ensemble of reference flux distributions
as described above. We simulated reaction inhibitions by multiplying each reaction rate, one at
a time, by a factor of 0.0 or 0.01 for non-essential and essential reactions, respectively. Then,
we solved Eq 1 for each reaction inhibition and each member of the ensemble of reference flux
distributions. Note that for the simulations of the exponential cultures, we used the exponential
cultures as the reference conditions themselves and, therefore, the simulations did not require
gene expression (i.e., g = 1 in Eq 1). For the biofilm cultures, we carried out the simulations
using the same reference condition as in the analysis of the metabolic differences between the
biofilm and planktonic cultures. The reference condition was the stationary culture because
this culture is physiologically closer to the biofilm culture than the exponential culture [10, 11].
Thus, in addition to the reference flux distribution, these simulations required the gene expres-
sion ratio between the biofilm and stationary cultures [11].

Scoring function to predict the effect of metabolic reaction inhibitions on
biofilm formation
For the inhibition of a metabolic reaction, we defined a scoring function to count how many
metabolite concentration changes were in common with the concentration changes caused by
inhibition of reactions associated with genes whose mutations are known to either reduce or
increase biofilm formation [22] (see S3 Table for the list of the genes). We considered that a
metabolite had a considerable concentration change if the median change was larger than two-
fold and all the changes occurred in the same direction across the ensemble of reference flux
distributions. Based on the predicted metabolite concentration changes caused by the inhibi-
tion of the biofilm-reducing and biofilm-increasing reactions, we defined four metabolite sets
as follows (see Fig 5):

1. Metabolites whose concentrations increased when inhibiting at least one biofilm-reducing
reaction (but their concentration did not decrease nor increase when inhibiting any biofilm-
reducing or biofilm-increasing reactions, respectively).

Analysis of P. aeruginosa Biofilms via Metabolic Models

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004452 October 2, 2015 18 / 24



2. Metabolites whose concentrations decreased when inhibiting at least one biofilm-reducing
reaction (but their concentration did not increase nor decrease when inhibiting any biofilm-
reducing or biofilm-increasing reactions, respectively).

3. Metabolites whose concentrations increased when inhibiting at least one biofilm-increasing
reaction (but their concentration did not increase nor decrease when inhibiting any biofilm-
reducing or biofilm-increasing reactions, respectively).

4. Metabolites whose concentrations decreased when inhibiting at least one biofilm-increasing
reaction (but their concentration did not decrease nor increase when inhibiting any biofilm-
reducing or biofilm-increasing reactions, respectively).

Then, for the inhibition of each reaction not used in the definition of any one of the metabo-
lite sets, we defined the following scoring function:

smet;i ¼ �n1;i � n2;i þ n3;i þ n4;i ð8Þ

where smet,i denotes the score for i-th reaction, and n1,i to n4,i denote the number of metabolites
concentration changes caused by inhibiting the i-th reaction that were similar to the metabolite
concentration changes of sets 1 to 4, respectively. Thus, we assumed that inhibition of reactions
with a negative or a positive score are likely to reduce or increase biofilm formation,
respectively.

Filtering putative target reactions for biofilm reduction
We collected mutants with altered tolerance to at least one antimicrobial from eight different
studies [42–49]. The studies covered 18 antimicrobials from 10 chemical classes and reported a
combined total of 262 and 459 mutants with decreased and increased tolerance to at least one
antimicrobial (S3 Supporting Information). We also collected mutants with attenuated

Fig 5. Definition of metabolite sets whose concentration changes were specific to either biofilm-
reducing or biofilm-increasing reactions. The defined sets are as follows: set 1, metabolites that
specifically increased when inhibiting biofilm-reducing reactions; set 2, metabolites that specifically
decreased when inhibiting biofilm-reducing reactions; set 3, metabolites that specifically increased when
inhibiting biofilm-increasing reactions; and set 4, metabolites that decreased when inhibiting biofilm-
increasing reactions. Note that each metabolite set includes metabolites from two subsets of the Venn
diagram. The number in parentheses indicates the number of metabolites in each subset.

doi:10.1371/journal.pcbi.1004452.g005
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virulence identified with a Caenorhabditis elegansmodel [50], a rat model of respiratory infec-
tion [51], and from the Virulence Factor Database (accessed October 20, 2014) [52]. We found
526 unique mutants with attenuated virulence (S3 Supporting Information). We used the Pseu-
domonas Genome Database [53] to obtain a list of P. aeruginosa genes with human homologs
(S3 Supporting Information). We obtained sets of experimentally determined reactions associ-
ated with each phenotype (e.g., increased tolerance to at least one antimicrobial) based on the
compiled lists of genes whose mutations altered a given phenotype and the gene-reaction rela-
tionships in the metabolic network model.

Simulation of metabolic changes between biofilm and stationary
planktonic cultures
We used the same simulation conditions to predict the metabolic differences between biofilm
and stationary cultures as in the simulations of reaction inhibitions. That is, we used the same
ensemble of reference flux distributions and the same gene expression data [11]. For each refer-
ence flux distribution in the ensemble, we computed a flux distribution and metabolite concen-
tration changes for the biofilm culture by solving Eq 1.

Simulation of the effect of gene expression changes on Psl synthesis
We carried out these simulations using the same ensemble of flux distributions and gene
expression data as in the simulations to predict the metabolic differences between the biofilm
and stationary cultures. We simulated the effect of the gene expression changes of a reaction by
running the model (Eq 1) using all the gene expression changes except the gene expression
changes for that reaction. We carried out this simulation for each reaction and determined
which reaction had the largest effect on Psl synthesis (excluding the reaction for Psl synthesis).

Supporting Information
S1 Supporting Information. Metabolic network model of P. aeruginosa. An Excel file with
the lists of the metabolic reactions and metabolites in the model.
(XLSX)

S2 Supporting Information. Kinetic model of P. aeruginosametabolic network. A com-
pressed archive containing MATLAB files to simulate the metabolism of P. aeruginosa under
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