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Systems toxicology of chemically induced liver
and kidney injuries: histopathology-associated
gene co-expression modules
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ABSTRACT: Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk
that may be difficult to assess because of a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific
histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identi-
fied co-expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project-Genomics Assisted
Toxicity Evaluation System (TG-GATEs) – a toxicogenomics database containing organ-specific gene expression data matched
to dose- and time-dependent chemical exposures and adverse histopathology assessments in Sprague–Dawley rats. We
proposed a protocol for selecting gene modules associated with chemical-induced injuries that classify 11 liver and eight kidney
histopathology endpoints based on dose-dependent activation of the identified modules. We showed that the activation of the
modules for a particular chemical exposure condition, i.e., chemical-time-dose combination, correlated with the severity of histo-
pathological damage in a dose-dependentmanner. Furthermore, themodules could distinguish different types of injuries caused
by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and
kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among
underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in
the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

Keywords: co-expression modules; toxicogenomics; systems toxicology; nephrotoxicity; hepatotoxicity; histopathology; adverse outcome
pathways

Additional supporting information may be found in the online version of this article at the publisher’s website.
* Correspondence to: Anders Wallqvist, ATTN: MCMR-TT, 504 Scott Street, Fort
Detrick, MD 21702–5012, USA.
E-mail: sven.a.wallqvist.civ@mail.mil

Department of Defense Biotechnology High Performance Computing Software
Applications Institute, Telemedicine and Advanced Technology Research Center,
U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA

This is an open access article under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs License, which permits use and distribution in any me-
dium, provided the original work is properly cited, the use is non-commercial and
no modifications or adaptations are made.

11
Introduction
The release of toxic industrial chemicals in the environment, indus-
trial accidents in manufacturing and transport, over-use of pesti-
cides and antibiotics in farming, as well as inappropriate use of
pharmaceutical drugs, create an increasing chemical health hazard
with the potential to cause both acute and long-term adverse
health effects. Accurately diagnosing chemical injuries through
non-invasive tests would allow for damage assessment, early inter-
vention and treatment, and prediction of potential for recovery
(Parkes et al., 2012). Efforts in elucidating themechanism of toxicity
and identifying potential biomarkers of exposure are key elements
in starting to address these issues (Blomme et al., 2009; Permenter
et al., 2013; Vinken et al., 2013; Hussainzada et al., 2014; Sturla et al.,
2014; Madejczyk et al., 2015; Speir et al., 2015). Here, we present
our efforts in identifying sets of genes (modules) that are charac-
teristic of and specific to a wide variety of chemical exposure con-
ditions causing liver and/or kidney injuries.

We used the Open Toxicogenomics Project-Genomics Assisted
Toxicity Evaluation System (TG-GATEs) to generate sets of genes
related to graded histopathology assessments of liver and kidney
damage asmanifestations of chemical exposure injuries. TG-GATEs
contains normalized, organ-specific data on chemically induced
gene expression changes coupled to graded histopathology
assessments in male Sprague–Dawley rats (Igarashi et al., 2014).
Ideally, the gene expression pattern in a module is transformed
into an activation score that reaches statistical significance in those
conditions for which a specific chemical/dose/exposure time
J. Appl. Toxicol. 2016; 36: 1137–1149 Published 2016. This article is a U.S. Govern
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combination causes an injury. Furthermore, the module activation
score should correlate with the degree of observed injury in a
dose-dependent manner.
Many toxicogenomics studies have used gene expression mi-

croarrays to characterize differential transcriptional regulation
resulting from chemical and toxicant insults (Blomme et al., 2009;
Gresham and McLeod, 2009; Panagiotou and Taboureau, 2012;
Smalley et al., 2010; Bai and Abernethy, 2013). Co-expressed gene
modules have been used to identify or classify genes specific to
tumors of certain cancers (Segal et al., 2004), as well as for
repurposing drugs as cancer therapeutics (Iskar et al., 2013). Com-
putational methods to create these modules include bi-clustering
(Ihmels et al., 2002; Bergmann et al., 2003), in which the constituent
genes share a correlated expression pattern across a subset of the
chemical exposure conditions. A large dataset like TG-GATEs – in
which multiple conditions that vary in chemical, dose, and time
ment work and is in the public domain
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are associated with an injury – is required to assess the specificity
of modules to different types of cellular and tissue damage caused
by different classes of toxicants.

In our previous work, wewere able to conceptually connect mo-
lecular toxicity pathways to co-expressed gene modules and link
these pathways to specific injuries in the liver with the objective
of identifying sensitive, specific and non-invasive biomarkers for
diseases and injuries (AbdulHameed et al., 2014; Tawa et al.,
2014). We found that modules generated from the Iterative Signa-
ture Algorithm (ISA) performed satisfactorily in terms of generating
modules that were specifically activated in response to chemical
injuries (Tawa et al., 2014). However, the ISA model parameters
that control selection and the association between gene sets
and condition sets were not examined exhaustively. Furthermore,
the selection of a suitable injury-specific module was in part based
on biological information and the presence of known biomarkers.

Here, we introduce a new and unbiased protocol for assigning
gene modules for specific histopathology-graded injuries based
on co-expression profile from a different, large-scale and varied da-
tabase containing multiple chemical exposure conditions ranging
from 4 to 29days in the Sprague–Dawley rat. We usedmultiple pa-
rameter sets for the generation ofmodules by the ISA and selected
histopathology-associated modules based on statistical metrics.
This new protocol is applicable to any organ, e.g., liver and kidney,
and does not require the input of biological information other than
the gene expression data.

The proposed protocol associated chemical-induced injury
modules with 11 liver and eight kidney histopathology endpoints
based on time- and dose-dependent activation of the modules.
We showed that the activation of the modules for a particular
chemical exposure condition, i.e., chemical-time-dose combi-
nation, correlated with the onset, presence and severity of
histopatological damage in a dose-dependent manner. Further-
more, the modules could distinguish different types of injuries
caused by chemical exposures as well as whether the injury-
module activation was specific to the tissue of origin (liver and
kidney). The generated modules provide a link between toxic
chemical exposures, different molecular-initiating events among
underlying molecular pathways, and resultant organ damage.

Methodology

Data

We used data from TG-GATEs (Igarashi et al., 2014), a publicly
available database that contains matched data associating
chemical exposures with transcriptomic changes in the liver and
kidney of male Sprague–Dawley rats along with graded histo-
pathology assessments. TG-GATEs contains repeated-dose expo-
sure of chemicals in low, middle and high dosages and four
different time-points (4, 8, 15 and 29days), whichweused formod-
ule generation. Chemical exposure conditions (or conditions, for
brevity) are defined as a specific chemical-time-dose combination.

TG-GATEs also provides histopathology data with correspond-
ing severity or grades – minimal, slight, moderate and severe –
associated with each chemical exposure condition. We considered
one chemical exposure condition a positive instance of the histo-
pathology endpoint if at least two animals in that condition
showed a histopathology grade of at least ’minimal’. A histopathol-
ogy assessment was considered for analyzes if at least two condi-
tions were positive. Thirty-five liver and 27 kidney histopathology
endpoints satisfied the above requirement.
Published 2016. This article is a U.S. Governwileyonlinelibrary.com/journal/jat
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Data processing

We downloaded the liver and kidney microarray datasets on
Affymetrix GeneChip Rat Genome 230 2.0 Array from TG-GATEs
(http://toxico.nibiohn.go.jp). The dataset contains whole genome
microarray expression data for liver and kidney from 6 765 and 1
952 rats, respectively. According to our previous protocol (Tawa
et al., 2014), we used the ArrayQualityMetrics (Kauffmann et al.,
2009) Bioconductor package to assess the quality of the Robust
Multi-array Averaged (RMA) (Irizarry et al., 2003) pre-processed
data. In this process, we removed outlier arrays and renormalized
the remaining data.

After array-level filtering and normalization, we performed
gene-level filtering using the BioConductor package genefilter
(Gentleman et al., 2004). Specifically, we removed genes without
Entrez IDs orwith low variance across conditions.We implemented
the low variance criteria (Bourgon et al., 2010) by computing and
sorting the expression variance of each gene over the complete
condition set and removing the bottom half as low-variance
genes. We performed additional filtering using the default settings
for the affy package from BioConductor to remove probe sets be-
low a signal-to-noise threshold. The number of replicates for each
condition that had a ’Present‘ call was determined for each probe
set, and we retained probe sets for which at least 25% of the con-
ditions had ’Present‘ calls for all replicates within a condition. As a
result, the liver data comprised expression data for 9520 genes
measured under 1679 distinct conditions. The kidney data
contained fewer conditions and chemicals, with expression data
for 9946 genes collected from 482 conditions. In addition, some
chemicals do not necessarily have data collected across both or-
gans or for all combinations of dose and time.

For the remaining genes and conditions, we calculated log ra-
tios (LRs) for each gene as the difference between treatment and
control RMA expression levels. We computed log2 expression
values for treatment and control as averages over replicates. We
assembled a log ratio matrix LR with rows defined by genes, col-
umns defined by conditions and thematrix elements, LRi,j, defined
as log ratios for genes i under conditions j. As a last step, we trans-
formed the log ratios into Z-scores (Tawa et al., 2014). The Z-score
of gene i under condition j is defined as the number of standard
deviations this observation is above the average over all condi-
tions for gene i.
Module/gene set generation

Weused the R package eisa to generate ISA (Bergmann et al., 2003)
co-expression modules associated with the entire Z-score matrix
for the liver and the kidney. We first ran ISAIterate, which requires
a starter gene set that is typically built using existing gene-related
knowledge; here we used ~200 starter gene sets from hierarchical
clustering (Rinaldo et al., 2005). In line with our previous work
(Tawa et al., 2014), random gene sets were added for ~15 000
starter gene sets. We used 25 combinations of tg ( gene threshold)
and tc (condition threshold) varying from 2.0 to 4.0 in 0.5 incre-
ments, i.e., 1) tg =2.0 and tc =2.0; 2) tg =2.5 and tc =2.0; … ; 25)
tg=4.0 and tc =4.0.

The two parameters individually control how similar the expres-
sion of genes and the subset of conditions are, with a higher num-
ber of either tg or tc being more restrictive, i.e., having a higher
level of correlation of genes and conditions within the bi-cluster.
In order to avoid the creation of redundant modules, we pruned
our results using the routine ISAUnique for every combination of
J. Appl. Toxicol. 2016; 36: 1137–1149ment work and is in the public domain
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tg and tc parameters, with the parameter cor.limit set to its default
value.

To ensure that the gene sets were robust – i.e., the core module
composition did not change when adding random genes – we
used the routine ISAFilterRobust with default parameters. All gene
modules with intra-module correlation< 0.4 and with the number
of genes >200 were filtered out. Using this procedure, we gener-
ated 891 liver modules and 303 kidney modules.
113
Module evaluation parameters

We used different metrics to select modules based on activation
scores, data correlations and statistical significance associatedwith
a specific histopathological outcome (injury). The activation score
Aþm;p ofmodulem associatedwith positive instances of histopathol-
ogy endpoint p is the average of the absolute value of the Z-score
for all genes i in the module m across all conditions j in the histo-
pathological outcome p.

To determine whether a module m is ’activated‘ for a particular
histopathology endpoint p, the activation score Aþm;p must be
greater than a threshold. The threshold was determined as having
a P-value< 0.025 from the distribution of all activation scores of all
modules across all conditions. The activation threshold was 1.79
for the liver and 2.08 for the kidneys.

We also used the Matthews correlation coefficient (MCC) to
evaluate the specificity of a module m to the histopathology
endpoint p. The MCCm,p can be calculated from a confusion
matrix as:

TP � TN – FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

where TP, TN, FP and FN refer to the number of true positives,
true negatives, false positives and false negatives, respec-
tively. The MCC values range from �1.0 to +1.0, where the
latter indicates a perfect correlation. In determining a true
positive for a particular histopathology endpoint, the positive
instance (condition j) of injury indicator p must have an acti-
vation score Aþm;p greater than the organ-specific activation
threshold. Positive instances of injury indicator p that is not
activated (activation score Aþm;p less than organ-specific
threshold cutoff ) were considered false negatives. In the
same manner, we determined true negatives (non-injury-
conditions j that did not activate a particular module m)
and false positives (non-injury-causing conditions j that activated
a module m).

To link module m with injury p, we chose the module with the
highest MCCm,p for a particular injury or histopathology provided
that the MCCm,p >0.4. In a 2×2 contingency table, the MCCm,p is
related to the chi-square (χ2) statistics (Powers, 2011). The false-
discovery-rate-corrected P-value of each MCCm,p was determined
from their corresponding χ2 values.

The statistical programming language R was used to perform
principal component analyzes, linear regression, and heatmap
clustering. To determine the overlap of the gene composition
between two modules, we used the Sorensen-Dice coefficient
(Dice, 1945), where an overlap score of one means that the two
modules are identical and zero means that the two modules have
no genes in common.
J. Appl. Toxicol. 2016; 36: 1137–1149 Published 2016. This article is a U.S. Govern
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External validation

We further evaluated the relevance of the modules for compati-
ble histopathology assessments measured in DrugMatrix, a
toxicogenomic database that contains organ-specific gene ex-
pression data matched to dose-dependent chemical exposures
and histopathology assessments in Sprague–Dawley rats
(Ganter et al., 2006). The animals were exposed to different
chemicals for 0.25 to 7 days, typically at concentrations compa-
rable to the high concentration in TG-GATEs. This dataset uti-
lized Affymetrix geneChip rat Genome 230 2.0 arrays. We
used the same protocol for processing this data as discussed
above. The activation of the modules from TG-GATEs was de-
termined from DrugMatrix gene expression data and assessed
based on positive instances of histopathology endpoint in
DrugMatrix.
Data availability

The gene composition of the selected liver and kidney modules
are provided in the Supplemental Materials.
Results

Module generation and selection

Weused the ISA to generate themodules for both liver and kidney.
We systematically adjusted the gene threshold tg and condition
threshold tc parameters of the ISA, used to control the correlation
of the co-expressed genes and conditions, respectively, from 2.0 to
4.0 (with 0.5 increments) for each parameter. Twenty-five combi-
nations of the ISA parameter were used, yielding 891 and 303
co-expressed modules for the liver and kidney, respectively. In
comparison, our previous efforts using one parameter set
(tg=3.5 and tc=1.8) yielded 78 liver modules using DrugMatrix
(Tawa et al., 2014).
We examined gene overlap among all generated modules

(Supplementary Material Fig. S1 shows the results for the liver
and kidney) and found instances of modules with identical
gene composition (overlap score =1) as well as multiple, highly
overlapping gene modules. As a consequence of this large
gene overlap, the number of modules activated by an injury
was also large. For example, for liver fibrosis as the histopathol-
ogy endpoint, 243 modules had a statistically significant activa-
tion score Aþm;p , i.e., the average of the absolute value of the
Z-score for all genes in each of the 243 modules across the
conditions that exhibited fibrotic histopathology was larger
than 1.79.
In order to select a more manageable number of modules that

would still be descriptive and specific to a particular histopathol-
ogy endpoint, we needed to implement a module selectionmet-
ric. One way of selecting modules is by choosing the module
with the maximum activation score. In liver fibrosis, for example,
the maximum activation score among all modules was 3.75 for
module 538. This module correctly predicted fibrosis in 11 of
the 13 fibrotic conditions, i.e., the module was activated and
the injury was present. However, module 538 was also activated
by 45 other conditions where no fibrosis was evident. Instead,
we implemented selection of modules based on the highest
MCCm,p as the specificity metric linking modules to a particular
injury.
ment work and is in the public domain wileyonlinelibrary.com/journal/jat
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Histopathology-specific modules

For each histopathology in the liver and kidney, we chosemodules
that scored the highestMCCm,p, provided that MCCm,p> 0.4. Of the
35 possible liver histopathology assessments in TG-GATEs as deter-
mined in the Methodology Section, we were able to link 11 histo-
pathology endpoints to their corresponding module (Table 1). All
P-values associated with the MCCm,p for the 11 modules
were< 10�16. Figure 1 shows the MCCm,p of each histopathology
endpoint with respect to the 11 modules. By design, the modules
chosen have the highest MCCm,p for a particular histopathology
endpoint p (highest MCCm,p in a column). However, somemodules
were activated by other injury conditions (column- and row-wise
comparison of MCCm,p). In addition, the modules with maximum
MCCm,p (LM1 to LM11) were selected from different (tg, tc) param-
eter combinations of the ISA (Supplementary Material Table S1).

To illustrate the ability of the module to characterize injury con-
ditions, we examined the chemicals in the dataset known to cause
liver fibrosis. Figure 2 shows the agreement between the activa-
tion of the module for liver fibrosis (LM7) with the positive obser-
vation of the fibrosis histopathology. Of the six chemicals
causing liver fibrosis, all activated module LM7. The activation of
module LM7 correctly predicted 12 of the 13 fibrotic conditions
(true positives), with the exception of high concentration of
naphthyl isothiocyanate at 4 days. Overall, liver fibrosis module
LM7 was associated with 12 TP, 1 643 TN, 1 FN, and 23 FP activa-
tions for an MCCLM7,liver fibrosis of 0.56.

In the kidney, we linked eight modules to a respective kidney
histopathology (Fig. 1 and Table 2) with a maximumMCC P-values
of< 10�13. Figure 3 shows the case of module KM5 activation
in response to chemical exposures linked to kidney fibrosis.
In TG-GATEs, two chemicals (allopurinol and puromycin)
cause kidney fibrosis with five specific exposure conditions
associated with identified kidney fibrosis histopathology –
all of which are activated by module KM5. Overall, the kidney
fibrosis module KM5 was associated with 5 TP, 475 TN, 0 FN
and 2 FP activations for an MCCKM5,kidney fibrosis of 0.84. For
the two FP instances, cisplatin and triamterene at the 29-day
exposure high-concentration regimens activated KM5 but
did not show positive histopathology for kidney fibrosis in
TG-GATEs.
Table 1. Modules associated with liver histopathology

Module ID Ng MCC

Alteration (cytoplasmic) LM1 23 0.53
Alteration (nuclear) LM2 131 0.42
Anisonucleosis LM3 82 0.47
Cellular infiltration LM4 31 0.44
Foci (cellular) LM5 41 0.43
Granular degeneration (eosinophilic) LM6 20 0.67
Fibrosis LM7 56 0.56
Hematopoiesis LM8 35 0.51
Proliferation (bile duct) LM9 17 0.61
Proliferation (oval cell) LM10 150 0.53
Single cell necrosis LM11 13 0.53

Ng=number of genes; MCC=Matthews correlation coefficient; TP=
positives; Sen= sensitivity or TP/(TP+ FN); Spc= specificity or T
NPV=negative predictive value or TN/(TN+FN); BAc=Balanced Ac
is provided as an Excel file in the Supplementary Materials.
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External validation of modules

We used DrugMatrix (Ganter et al., 2006) – a large-scale
toxicogenomics database with gene expression data and partly
overlapping histopathology observations compared to TG-GATEs –
to validate the activation of the modules generated from
TG-GATEs in predicting the presence of an injury.

We used MCCm,p as a measure of how well the modulesm from
TG-GATEs could predict the presence of histopathology endpoint
p in DrugMatrix using the gene expression data of the latter data-
base. Both kidney and liver tissues had three possible comparisons
each, one of which was common to both tissue types (cellular infil-
tration). Table 3 summarizes the possible comparisons between
these overlapping histopathology endpoints.

Among the liver modules, fibrosis (LM7) and bile duct prolifera-
tion (LM9) were specifically activated in their corresponding histo-
pathology endpoints in DrugMatrix with MCCs of 0.57 and 0.60,
respectively. These correlation values were similar to the values
from the TG-GATEs data. LM7 was activated in eight of the 10 liver
fibrosis conditions in DrugMatrix (true positives) and in 11 condi-
tions not associatedwith fibrosis (false positives). The negative pre-
dictive rate, i.e., the fraction of true negatives among all conditions
predicted to be negative, was> 0.99 for both of these modules.
For the kidney histopathology assessments found in both TG-
GATEs and DrugMatrix, the kidney modules from TG-GATEs could
be used to predict the histopathology in DrugMatrix for the hya-
line cast and necrosis with anMCCm,p>0.4. These predictionswere
similarly associated with similar positive and negative predictive
rates to the liver modules. Modules assigned to cellular infiltration
for both liver and kidney tissues have significantly lower MCC
values for predicting positive instances of this condition in
DrugMatrix as compared with TG-GATEs.
Module properties

The creation of gene modules represents a systems toxicology ef-
fort to organize the transcriptional response around specific injury
endpoints, here chosen as graded histopathology assessments of
liver and kidney tissues. Next, we examined the properties of these
modules with respect to activation and classification as a response
to chemical toxicant exposures.
TP TN FN FP Sen Spc PPV NPV BAc

7 1654 0 18 1.00 0.99 0.28 1.00 0.99
9 1633 1 36 0.90 0.98 0.20 1.00 0.94
8 1649 2 20 0.80 0.99 0.29 1.00 0.89
20 1610 22 27 0.48 0.98 0.43 0.99 0.73
6 1647 0 26 1.00 0.98 0.19 1.00 0.99
29 1622 12 16 0.71 0.99 0.64 0.99 0.85
12 1643 1 23 0.92 0.99 0.34 1.00 0.95
12 1636 1 30 0.92 0.98 0.29 1.00 0.95
21 1631 9 18 0.70 0.99 0.54 0.99 0.84
11 1640 0 28 1.00 0.98 0.28 1.00 0.99
19 1622 5 33 0.79 0.98 0.37 1.00 0.89

true positives; TN= true negatives; FN= false negatives; FP= false
N/(FP+TN); PPV=positive predictive value or TP/(TP+ FP);
curacy or ½ (Sen+ Spc). The gene complement of each module

J. Appl. Toxicol. 2016; 36: 1137–1149ment work and is in the public domain
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Figure 1. The module for the specific histopathology endpoints has the
highest Matthews correlation coefficient (MCC). Shown are the MCCs for
the liver histopathology assessments, ordered according to Table 1 from
cytoplasmic alteration as P1 to single cell necrosis as P11, and 11 modules
for the liver, LM1 to LM11. LM1 corresponds to the module for liver P1 and
has the highest MCC for that histopathology. Also shown are the MCCs
for the eight kidney injuries, ordered as listed in Table 2. As with the
liver modules, KM1 is the module for kidney P1 and has the highest
MCC for P1.
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Modules classify and quantify injuries

Module activation can be used to separate exposure conditions
that are associated with injury from those that are not. Using prin-
cipal component analysis (PCA) based on the activation score for
the histopathology-related modules; Fig. 4A shows the separation
of the 1679 conditions in the liver for TG-GATEs into those that
cause an adverse histopathology outcome versus those conditions
that do not cause any injury. The first three principal components
ofmodule activation in the liver accounted for 87% of the variance.
In contrast, the PCA of all conditions based on individual gene ac-
tivation – here limited to genes found in themodules – did not dis-
tinguish between conditions associated with adverse and normal
histopathology outcomes (Fig. 4B). The first three principal compo-
nents of the Z-scores of genes in the liver accounted for 41% of the
variance.
J. Appl. Toxicol. 2016; 36: 1137–1149 Published 2016. This article is a U.S. Govern
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The PCA of all 482 conditions involving the kidney in TG-GATEs
based on the activation score for the eight kidney modules
showed a separation between adverse histopathology conditions
from those devoid of any injury (Fig. 4C). The first three principal
components of module activation in the kidney accounted for
93% of the variance. In contrast, gene-level PCA did not clearly
separate out injury versus non-injury conditions (Fig. 4D). The
first three principal components of Z-scores of genes (involved
in modules) in the kidney accounted for only 50% of the
variance.
We also examined the dose-dependent relationship between

the module activation score and the histopathology assessment,
i.e., whether heightened activation correlated with increased se-
verity of the histopathology. The histopathology grades were con-
verted to numerical values based on the severity of the injury,
ranging from 1 for ’minimal‘ to 4 for ’severe’, and averaged across
the animals studied for a particular exposure conditions. Figure 5A
shows the general trend for all injury conditions as a function of in-
creasing activation score. The overall coefficient of determination
(R2) as a measure of the goodness of the linear fit for all liver histo-
pathology scores and activation of the appropriate injury module
was 0.45. Table 4 shows R2 for each of the 11 individual histopa-
thologies, ranging from the best in cytoplasmic alteration
(R2=0.90) to absence of correlation in hematopoiesis (R2=0.09).
The corresponding data are shown in Supplementary Material
Fig. S2. The kidney modules also showed increased injury severity
as a function of activation (Fig. 5B); albeit the R2 for the linear
relationship was lower than in the liver (0.36). Among the eight
kidney histopathology endpoints, the correlation of histopathol-
ogy grade versus activation score was best for the presence of
intracytoplasmic inclusion bodies (0.65) and worst (0.04) in hyper-
trophy (Table 4 and Supplemental Material Fig. S2).
A unique module describes each histopathology

One of the advantages of our module selection protocol was the
assignment of unique modules for each histopathology endpoint
although some endpoints are closely related. For example, the four
liver histopathology endpoints – cellular infiltration, fibrosis, bile
duct proliferation and single cell necrosis – share common expo-
sure conditions with the same chemical causing multiple abnor-
mal histopathologies. Using the full set of 891 liver modules, 61
modules were activated by all four endpoints. Figure 6A shows
that all 61 modules shared common genes and had high overlap
scores, including overlap scores of 1.0 indicating that twomodules
have the same gene composition. However, in our proposed pro-
tocol, the MCCm,pmetric was used to link a uniquemodule to each
of these closely related endpoints. Figure 6B shows that the se-
lected modules for the four closely related liver endpoints have
very limited gene membership overlap. The limited gene overlap
extended to all 11 liver and eight kidney modules (Supplementary
Material Table S2).
4

Modules capture organ-specific injuries

For a number of chemical exposure conditions, the TG-GATEs data
providematched liver and kidney data for the same set of animals.
Figure 7 shows the histopathology assessment for liver and kidney
fibrosis and the global module activation pattern for two
nephrotoxicants and two hepatotoxicants. Allopurinol and puro-
mycin, two chemicals that cause kidney fibrosis, activated a
number of kidney modules but no liver modules. Similarly, the
ment work and is in the public domain wileyonlinelibrary.com/journal/jat
published by John Wiley & Sons, Ltd.
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Figure 2. Positive instances of the liver fibrosis histopathology activate the liver fibrosis module. Conditions (chemical-time-dose combination) with
activation scores above the activation threshold (corresponding to P-value <0.025) are considered activated (in red). The activation score is defined as
the average of the absolute value of the expression Z-scores of the genes in the liver fibrosis module (LM7). Positive instances of liver fibrosis are marked
with stars. Liver fibrosis is predicted if the histopathology endpoint is observed and LM7 is activated for the condition (red rectangleswith stars). ND indicates
no data are available.
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known hepatotoxicants thioacetamide and carbon tetrachloride
primarily activated liver modules and not kidney modules. The
corresponding data for allyl alcohol, lomustine, monocrotaline,
and naphthyl isothiocyanate are shown in Supplementary
Material Fig. S3.
Discussion

Module generation and selection

In this study, we proposed a comprehensive scheme for creating
and selecting modules associated with different histopathologies.
Our protocol provides for an exhaustive module generation and a
metric for module selection applicable to any organ or tissue type.
Here, we implemented this scheme for assessing graded histopa-
thology for both liver and kidney using TG-GATEs data.

The module generation scheme was designed to essentially be
both non-parametric and unsupervised. We consider the module
generation as non-parametric because we systematically varied
the gene threshold tg and condition threshold tc in the ISA to
Table 2. Modules associated with kidney histopathology

Histopathology Module ID Ng MCC T

Cast (hyaline) KM1 26 0.40 6
Cellular infiltration KM2 53 0.52 7
Degeneration KM3 72 0.66 1
Dilatation KM4 9 0.67 1
Fibrosis KM5 147 0.84 5
Hypertrophy KM6 18 0.41 5
Intracytoplasmic inclusion body KM7 46 0.65 7
Necrosis KM8 16 0.44 9

Ng=number of genes; MCC=Matthews correlation coefficient; TP=
positives; Sen= sensitivity or TP/(TP+ FN); Spc= specificity or T
NPV=negative predictive value or TN/(TN+FN); BAc=Balanced Ac
is provided as an Excel file in the Supplementary Materials.
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generate the modules. Twenty-five sets of ISA parameters were
used to generate the modules. For the most restrictive parameter
set (tg=4.0 and tc=4.0), 14 liver modules were generated contain-
ing an average of ~37 genes each. As either tg and tc were relaxed
to lower values, the number of modules as well as the number of
genes and conditions in a module increased. The comprehensive
module generation identified 891 modules for the liver and 303
modules for the kidney. As we filtered out modules that had
>200 genes, no module from parameter sets where tg=2.0 was
part of the modules used in the analyzes. The module generation
was also unsupervised, in the sense that no prior knowledge was
required beyond the expression data and no biological informa-
tion or pathway knowledge was used to determine the subset of
genes and conditions in amodule. We emphasize that the histopa-
thology is not an input of the ISA protocol and does not per se in-
fluence the composition of the subset of conditions composing
the co-expression module.

The module generation process has the advantage that the
modules are diverse in terms of how correlated the genes and
conditions are within a co-expression module. Thus, there is
P TN FN FP Sen Spc PPV NPV BAc

459 6 11 0.50 0.98 0.35 0.99 0.74
462 9 4 0.44 0.99 0.64 0.98 0.71

2 458 9 3 0.57 0.99 0.80 0.98 0.78
6 451 11 4 0.59 0.99 0.80 0.98 0.79

475 0 2 1.00 1.00 0.71 1.00 1.00
463 5 9 0.50 0.98 0.36 0.99 0.74
467 1 7 0.88 0.99 0.50 1.00 0.93
452 10 11 0.47 0.98 0.45 0.98 0.72

true positives; TN= true negatives; FN= false negatives; FP= false
N/(FP+TN); PPV=positive predictive value or TP/(TP+ FP);
curacy or ½ (Sen+ Spc). The gene complement of each module
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Figure 3. Positive instances of the kidney fibrosis histopathology
activate the kidney fibrosis module. Conditions with KM5 activation
scores above the activation threshold were considered activated (in
red). Positive instances of kidney fibrosis are marked with stars. Liver
fibrosis is predicted if the histopathology endpoint is observed and
KM5 is activated for the condition (red rectangles with stars). ND indicates
no data are available.

Systems toxicology of chemically induced liver and kidney injuries

114
no a priori assumption on how correlated a biological process
needs to be in order to be considered part of a molecular toxic-
ity pathway. However, with more partially overlapping modules,
a biological effect as gauged by the positive instances of a
histopathology assessment might activate multiple non-
independent modules. This creates a problem for prioritizing
and selecting modules. Hence, we used the MCCm,p (MCC of
modulem for histopathology outcome p) – a balanced measure
of true and false positives and negatives – to address two issues
with the comprehensive module generation, namely (i) to de-
termine which modules are more predictive of the presence of
an injury and (ii) to identify which set of ISA parameters creates
modules that are specific to injuries.

By selecting modules with the highest MCCm,p, we chose
modules with better chances of predicting the presence of the
J. Appl. Toxicol. 2016; 36: 1137–1149 Published 2016. This article is a U.S. Govern
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injury. In our liver fibrosis exemplar, 12 of the 13 conditions with
observable liver fibrosis histopathology also activated (above the
threshold cut-off ) the module LM7 (Fig. 2). This module is not
necessarily the same as the module with the highest activation
score (module 538 in liver fibrosis). Such highly activated modules
can be influenced by outliers, i.e., positive instances of the injury
that have an abnormally high average expression Z-score of the
genes in the module. Module 538 activated 85% of the fibrotic
conditions (versus 92% for module LM7) and had a higher number
of false positive conditions than LM7 (45 versus 23).
Linking histopathology endpoints with modules, we found that

no single set of ISA parameters produced modules that consis-
tently scored the highest MCCm,p for the 11 liver and eight kidney
histopathology endpoints (Supplementary Material Table S1). As
the ISA parameter controls the coherence of the co-expression
within a module, and with the assumption that modules with the
highest MCCm,p are the most predictive module for a histopathol-
ogy, then differing tg and tc thresholds generated the most consis-
tently linkedmodules to the histopathology. In comparison, for the
entire set of 11 liver injuries, our previously published ISA parame-
ter set of tg=3.5 and tc=1.8 (Tawa et al., 2014) can only describe
one injury better than the comprehensive module generation
presented here, underscoring the importance of generating and
examining additional modules.
From the module selection protocol, 11 modules were directly

linked to the same number of histopathology assessments in the
liver (Table 1) and, similarly, eight modules for the kidney (Table 2).
The module selection is based on statistical metrics applied to co-
expressed genes rather than using biological information, e.g., spe-
cific cellular pathways or presence of known genes associatedwith
a particular injury.
Correlated prediction of histopathology with module
activation

Two of the histopathology outcomes we linked using module
activation were liver and kidney fibrosis. We showed a strong
correlation between activation and abnormal histopathology
for chemicals known to cause liver fibrosis in TG-GATEs, where
12 of the 13 fibrotic conditions activated module LM7 (Fig. 2
and Supplementary Material Fig. S4). Similarly, a lack of module
activation correctly predicted a lack of fibrosis in 1 643 out of 1
666 non-fibrotic exposure conditions. Module LM7 was acti-
vated in 23 conditions that did not have observed fibrosis.
The 23 false positive cases listed in Table 1 involved seven dif-
ferent chemicals under multiple exposure conditions. Three of
these chemicals caused fibrosis at different exposure time-
points in TG-GATEs (Fig. 2), whereas the remaining four
chemicals (acetamidofluorene, methapyrilene, methylene
dianiline and nitrosodiethylamine) had multiple exposure con-
ditions activating the LM7 module but without observed liver
fibrosis. However, all of these chemicals are known to cause
or promote liver fibrosis under certain conditions (Fukushima
et al., 1979; Nakazato et al., 2010; Chobert et al., 2012; Probert
et al., 2014).
For kidney fibrosis, activation of KM5 (the module for kidney

fibrosis) predicted all five positive instances of the histopathology
assessment in a dose-dependentmanner (SupplementaryMaterial
Fig. S4). For two conditions involving cisplatin and triamterene, KM5
was activated but did not show fibrotic histopathology even though
cisplatin is known to induce kidney fibrosis (Yuasa et al., 2014)
ment work and is in the public domain wileyonlinelibrary.com/journal/jat
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Table 3. Verification of TG-GATEs liver and kidney modules using DrugMatrix

Histopathology Module Ng MCCT MCCDM TP TN FN FP Sen Spc PPV NPV BAc

Liver
Cellular infiltration LM4 31 0.44 0.24 22 405 211 1 0.09 1.00 0.96 0.66 0.55
Fibrosis LM7 56 0.56 0.57 8 619 2 11 0.80 0.98 0.42 1.00 0.89
Proliferation (bile duct) LM9 17 0.61 0.60 11 614 3 12 0.79 0.98 0.48 1.00 0.88
Kidney
Cast (hyaline) KM1 26 0.40 0.43 3 349 0 13 1.00 0.96 0.19 1.00 0.98
Cellular infiltration KM2 53 0.52 0.16 1 352 2 10 0.33 0.97 0.09 0.99 0.65
Necrosis KM8 16 0.44 0.52 9 341 7 8 0.56 0.98 0.53 0.98 0.77

Ng=number of genes; MCCT =Matthews correlation coefficient in TG-GATEs; MCCDM=Matthews correlation coefficient in DrugMatrix;
TP= true positives; TN= true negatives; FN= false negatives; FP= false positives; Sen= sensitivity or TP/(TP+ FN); Spc= specificity or
TN/(FP+ TN); PPV=positive predictive value or TP/(TP+ FP); NPV=negative predictive value or TN/(TN+FN); BAc=Balanced Accuracy
or ½ (Sen+ Spc).
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whereas triamterene is an acute nephrotoxicant known to cause
nephropathy (Nasr et al., 2014).
TG-GATEsmodules cross-validated using an external database

We further verified whether the module LM7 was activated in fi-
brotic conditions in the DrugMatrix, an external dataset of the
same scope and size as TG-GATEs. Eight of the 10 conditions with
observed liver fibrosis were correctly predicted by the activation of
module LM7 (Table 3), including three conditions of naphthyl iso-
thiocyanate and one condition of lomustine – two chemicals with
Figure 4. Module activation can predict histopathology-causing condition
histopathology-graded chemical exposure conditions (red dots) for modules (A
if at least one of the 11 liver (A and B) or 8 kidney (C and D) histopathology end
graded damage are marked with black dots.
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observed liver fibrosis in TG-GATEs. In addition, two conditions of
methylene dianiline (a false positive chemical in TG-GATEs) caused
fibrosis and activated module LM7 using DrugMatrix. Differences
in experimental setup and histopathological assessment from
the two studies may in part explain why the methylene dianiline
in TG-GATEs (100mgkg�1 from 4 to 29days) did not cause fibrosis,
but the same chemical in DrugMatrix (81mgkg�1 from 3 to 5days)
did. Nitrosodimethylamine, which is chemically related to the TG-
GATEs compound nitrosodiethylamine that was labeled a false
positive, causes fibrosis in DrugMatrix and activated module LM7
for this dataset.
s. Principal component analysis of the activation of the modules by
and C) and for genes (B and D). A condition was considered injury causing
points was positive. All other conditions not associated with histopathology
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Figure 5. Injury severity is associated with correspondingly higher activation scores. In general, as the severity of the histopathology increases, the activa-
tion score of the module increases. The histopathology assessments were converted to numbers (with minimal = 1, slight = 2, moderate = 3, severe = 4) and
the histopathology score was determined as the average over all replicates. Only conditions with at least one replicate having an observed histopathology
were considered for the linear regression. The goodness of the fit was measured as the coefficient of determination (R2).

Systems toxicology of chemically induced liver and kidney injuries
Six hundred and thirty conditions in DrugMatrix did not cause
liver fibrosis. Most of these conditions also did not activate LM7
(619 true negatives). However, 11 conditions were considered as
false positives where these conditions activated the TG-GATEs
module LM7 without the presence of liver fibrosis in DrugMatrix.
Most of the false-positive conditions are related to liver fibrosis.
In our previous study, a liver fibrosis module was generated from
Table 4. Linear regression of the activation score relative to
the histopathology grade or severity

Histopathology Module ID R2

Liver
Alteration (cytoplasmic) LM1 0.90
Alteration (nuclear) LM2 0.73
Anisonucleosis LM3 0.15
Cellular infiltration LM4 0.56
Foci (cellular) LM5 0.43
Granular degeneration (eosinophilic) LM6 0.23
Fibrosis LM7 0.57
Hematopoiesis LM8 0.09
Proliferation (bile duct) LM9 0.34
Proliferation (oval cell) LM10 0.68
Single cell necrosis LM11 0.36
Kidney
Cast (hyaline) KM1 0.26
Cellular infiltration KM2 0.63
Degeneration KM3 0.16
Dilatation KM4 0.62
Fibrosis KM5 0.64
Hypertrophy KM6 0.04
Intracytoplasmic inclusion body KM7 0.65
Necrosis KM8 0.20

R2= coefficient of determination. The histopathology
assessments were converted to scores (minimal = 1,
slight = 2, moderate = 3, and severe = 4) and averaged over
all replicates in a condition. The R2 was determined through
linear regression of the averaged histopathology grade and
the activation of the module by the positive instances of the
injury.
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a combination of differentially expressed genes, co-expression
clustering, pathway enrichment analyzes and protein–protein in-
teraction networks using the DrugMatrix database (AbdulHameed
et al., 2014). Seventeen conditions, either with observed fibrosis in
DrugMatrix or known to cause fibrosis, clustered together based
on the activation of the previous DrugMatrix-based fibrosis
module (AbdulHameed et al., 2014). Of the 11 false positive condi-
tions of LM7 in DrugMatrix, 10 conditions were part of the previ-
ously identified cluster of 17 conditions associated with liver
fibrosis (AbdulHameed et al., 2014). Thus, the false positives in
the verification dataset are also connected to fibrosis, including
vinblastine, allyl alcohol, carbon tetrachloride and lipopolysaccha-
ride (Liedtke et al., 2013).
Given that the module construction was geared towards

identifying sets of co-expressing genes, partly reflecting the
underlying transcriptional program that needs to be in place
to cause fibrosis, module activation may be present before
the histological manifestation of fibrosis is evident. Thus, acti-
vation of LM7 may be a true pre-fibrotic signal indicative of the
early onset of liver fibrosis, implying that our protocol has the
potential to generate modules that can predict the early onset
of initiating events in molecular toxicity pathways that can
lead to histological damage.
Themodules derived from TG-GATEs were able to predict condi-

tions that cause the same or similar histopathology endpoints in
DrugMatrix. The comparison using liver fibrosis for module LM7
was discussed above and in addition, module LM9 has good pre-
dictive power for the presence of bile duct proliferation or hyper-
plasia in DrugMatrix. In the kidney, KM1 for the hyaline cast and
KM8 for necrosis were verified through the DrugMatrix external
dataset (Table 3). For these endpoints, the MMC values of the
classification in DrugMatrix were comparable to the values in
TG-GATEs.
The chemical exposure conditions in DrugMatrix and TG-GATEs

do not overlap to a great extent, and, thus, they represent both
similar and different aspects of chemical toxicity. DrugMatrix con-
ditions typically include high doses for a short period of time (0.25
to 7 days). In TG-GATEs, the chemical exposure conditions ranged
from 4 to 29days with high concentrations that are usually lower
than those used in DrugMatrix. In spite of the differences in exper-
imental setup, etc., the cross-validation of modules generated in
TG-GATEs indicated the potential general applicability of these
ment work and is in the public domain wileyonlinelibrary.com/journal/jat
published by John Wiley & Sons, Ltd.
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Figure 6. The module selection assigns unique modules to closely related histopathology endpoints. In TG-GATEs, chemical exposure conditions may
cause a number of injuries. Four closely related histopathology assessments (cellular infiltration, fibrosis, bile duct proliferation and single cell necrosis) share
a number of common chemicals. (A) All four injuries activate 61 modules in the liver, with the 61 modules having overlapping genes, as determined by the
Sorensen-Dice coefficient (Dice, 1945). (B) Using our module selection protocol, the number of overlapping genes among the modules is limited.
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modules in detecting chemical injuries and activation of molecular
toxicity pathways.

In contrast, cellular infiltration in the liver and the kidney in
DrugMatrix were not satisfactorily predicted by modules gener-
ated from TG-GATEs. A relatively large number of conditions were
annotated in DrugMatrix as having observable cellular infiltration
in the liver as compared to in TG-GATEs (233 vs. 42). This is partly
due to the large number of control animals, i.e., those that were
not exposed to any chemical, also showing positive histopathol-
ogy for cellular infiltration in the DrugMatrix data. For the kidney,
only three instances of cellular infiltration of the kidney were ob-
served and only one of these was correctly predicted by TG-GATEs
module using DrugMatrix data.
Biological significance of the modules

The construction of gene co-expression modules that broadly
characterize injuries can be used to select specific gene signatures
that may be proposed as genes and proteins for future develop-
ment as clinical biomarkers. Although biological information was
not used in the selection of modules, the modules (Tables 1 and 2)
may still be related to the biological pathways involved in injury
generation or progression. Using fibrosis as an example, both
liver and kidney fibrosis modules contain known biomarkers for
fibrosis (Adams, 2011), including tissue inhibitor of metallopro-
teinase (Timp1), type IV collagens (Col4a1, Col4a2) and laminin
(LM7 has Lamb1 and KM5 has Lama4). Other known biomarkers
(or related genes) such as Timp2, fibronectin Fn1 gene and
Published 2016. This article is a U.S. Governwileyonlinelibrary.com/journal/jat
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matrix metalloproteinase 2 (Mmp2) were part of the kidney
fibrosis module KM5. In addition, both liver and kidney fibrosis
modules also contained Col1a1, Col6a2 and fibrillin. The extracellu-
lar matrix-receptor pathway was the KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway that was most significantly over-
represented pathway in both modules, consistent with the exces-
sive scarring associated with fibrosis.

We reviewed the Comparative Toxicogenomics Database (Davis
et al., 2011) for genes associated with liver and kidney injuries. The
11 liver modules have on average ~5 genes related to general liver
injury while the eight kidney modules have ~7 genes related to
general kidney injury. The kidney modules included some of the
known biomarkers (Dieterle et al., 2010) for the kidney, namely
hepatitis A virus cellular receptor 1 (Havcr1), also known as kidney
injury molecule-1 (Kim-1), and clusterin (Clu).
Module properties

We examined properties of the modules and their behavior in
response to different chemical exposures. First, from the PCA, the
activation of themodules could be used to differentiate conditions
that are associated with injurious exposure conditions from those
that are not. In contrast, just using individual genes, even those that
are contained in the modules associated with the injuries, the
PCA could not separate out conditions related to injuries (Fig. 4).
However, even using modules, this analysis is somewhat limited,
as the PCA could not distinguish between injuries, in part
J. Appl. Toxicol. 2016; 36: 1137–1149ment work and is in the public domain
published by John Wiley & Sons, Ltd.



Figure 7. The activation of themodules is organ-specific. Allopurinol and puromycin, two nephrotoxicants that cause a number of kidney injuries, including
kidney fibrosis, generally activate kidney modules. Conversely, thiocetamide, a hepatotoxicant that causes liver fibrosis among other liver injuries, selectively
activates liver injury modules. Also shown is carbon tetrachloride, a known hepatotoxicant. The four other chemicals causing liver fibrosis are shown in
Supplementary Material Fig. S3.
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because they are closely related, i.e., the same condition can
cause two or more distinct histopathology conditions.

We also showed that when the histopathology outcome is
positive, the severity of the injury correlated with the activa-
tion score (Fig. 5), a property which could be exploited in
identifying biomarkers or gene signatures indicative of early
detection and damage prognosis of chemical exposures.
While in general we see that severe injuries lead to higher ac-
tivation scores, some injuries have a poor correlation between
severity and module activation. However, in injuries where
the linear regression has a poor correlation, the positive in-
stances of the injury still activated the module. In liver hema-
topoiesis, associated with a low R2 of 0.09 for LM8 (Table 4),
high-dose iproniazid exposures have activation scores of
1.84 and 3.65 with severity grades of 2.0 and 2.3 at 8 and
15 days, respectively. High doses of naproxen activate LM8
at 8 and 15 days with activation scores of 2.74 and 4.18, albeit
J. Appl. Toxicol. 2016; 36: 1137–1149 Published 2016. This article is a U.S. Govern
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with a 2.0 histopathology grade for both conditions. Taken to-
gether, the modules with lower values of R2 may be associated
with non-linear dose–response relationships, and, hence, less likely
to be informative as a source of early detection biomarkers, yet
would still be good indicators of the presence of the injury.
We further showed that the genes have limited or no overlap

among modules (Supplementary Material Table S2). The selection
of the module was solely based on using the MCCm,p as a metric,
thus the uniqueness of the composition of genes in the module
was unexpected. Even modules associated with closely related
injuries have genes with limited overlap among them (Fig. 6B).
In some cases, genes in one module may appear in the other
modules as genes may be part of multiple response pathways that
are commonly activated in response to different injuries. How-
ever, having unique modules with limited overlap in gene
composition is important for selecting specific biomarkers for a
given particular injury.
ment work and is in the public domain wileyonlinelibrary.com/journal/jat
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Lastly, we showed that differential organ toxicity and specificity
for nephrotoxicants and hepatotoxicants was also captured by the
generated modules (Fig. 7 and Supplementary Material Fig. S3).
Examining activation of the modules, the same chemical exposure
conditions administered to the animal could specifically affect
the kidney, i.e., activate kidney modules, but not the liver for
nephrotoxicants. Hepatotoxicants also activated liver modules,
but not kidney modules, in animals exposed to the same chemical.
This toxicant specificity might be utilized in developing assays
based on the gene/protein composition of these modules to iden-
tify organ-specific molecular toxicity pathways for predicting
adverse effects of a given chemical.
Limitations of current protocol and prospects for use

The module methodology is based on identifying co-expressed
genes by the ISA bi-clustering algorithm and dependent on the
availability of comprehensive, large-scale in vivo datasets. Inclusion
of additional chemical exposure conditions – especially from
chemical exposures that cause multiple, closely related injuries
(e.g., cellular infiltration, fibrosis, bile duct proliferation, and single
cell necrosis) as well as chemical exposures that are very specific
to a particular endpoint – should further improve module genera-
tion for distinguishing these and other endpoints from one
another.

Despite these general limitations, the elucidation of co-
expressed modules associated with histopathology outcomes
can provide insight into the underlying molecular mechanism of
the injury. We showed that gene co-expression modules could
characterize chemically induced liver and kidney injuries and
may provide a rational basis for identifying and developing poten-
tial biomarkers for diagnosis or prognosis. For example, the liver fi-
brosis module LM7 could predict the presence of the injury and
may predict the onset of fibrosis based on dose-dependent activa-
tion of the module. Even for the exposures that did not develop fi-
brosis yet activated the LM7module, the chemicals themselves are
known to cause fibrosis under different conditions. Hence, LM7 ac-
tivation may constitute a prognostic module for the early onset of
fibrosis. If so, the modules may serve as a foundation for creating
diagnostic tests for monitoring adverse health effects.

Conclusion
Here, we used TG-GATEs to identify co-expressed genes (modules)
specific to injury endpoints in the liver and kidney. Our imple-
mentedmethod associated chemical-induced injury modules with
11 liver and eight kidney histopathology endpoints based on time-
and dose-dependent activation of the modules. We showed that
the activation of the modules for a particular chemical exposure
condition, i.e., chemical-time-dose combination, correlated with
the onset and presence of histopathological damage in a dose-
dependent manner. We showed that the liver fibrosis-linked mod-
ule (LM7) was activated in 92% of liver fibrotic conditions; similarly,
the kidney fibrosis-linked module (KM5) was activated in 100% of
the kidney fibrotic conditions. The false-positive conditions, where
themodule was activatedwithout the presence of injury, were also
identified to be related to the injury. In general, the activation of
the module can be verified and validated by positive instances of
the same or similar histopathology endpoints in DrugMatrix, an ex-
ternal toxicogenomics database. Furthermore, the modules could
distinguish different types of injuries caused by chemical expo-
sures as well as whether the injury-module activation was specific
Published 2016. This article is a U.S. Governwileyonlinelibrary.com/journal/jat
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to the tissue of origin (liver and kidney). The generated modules
provide a link between toxic chemical exposures, different molec-
ular initiating events among underlying molecular pathways and
resultant organ damage.
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