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ABSTRACT Is there a universal genetically programmed defense providing tolerance to
antibiotics when bacteria grow as biofilms? A comparison between biofilms of three
different bacterial species by transcriptomic and metabolomic approaches uncovered
no evidence of one. Single-species biofilms of three bacterial species (Pseudomonas aerugi-
nosa, Staphylococcus aureus, and Acinetobacter baumannii) were grown in vitro for 3 days
and then challenged with respective antibiotics (ciprofloxacin, daptomycin, and tigecycline)
for an additional 24 h. All three microorganisms displayed reduced susceptibility in biofilms
compared to planktonic cultures. Global transcriptomic profiling of gene expression compar-
ing biofilm to planktonic and antibiotic-treated biofilm to untreated biofilm was performed.
Extracellular metabolites were measured to characterize the utilization of carbon sources
between biofilms, treated biofilms, and planktonic cells. While all three bacteria exhibited
a species-specific signature of stationary phase, no conserved gene, gene set, or common
functional pathway could be identified that changed consistently across the three micro-
organisms. Across the three species, glucose consumption was increased in biofilms
compared to planktonic cells, and alanine and aspartic acid utilization were decreased
in biofilms compared to planktonic cells. The reasons for these changes were not readily
apparent in the transcriptomes. No common shift in the utilization pattern of carbon sour-
ces was discerned when comparing untreated to antibiotic-exposed biofilms. Overall, our
measurements do not support the existence of a common genetic or biochemical basis
for biofilm tolerance against antibiotics. Rather, there are likely myriad genes, proteins,
and metabolic pathways that influence the physiological state of individual microorgan-
isms in biofilms and contribute to antibiotic tolerance.
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Because antimicrobial tolerance appears to be a universal, ancient, and ubiquitous
phenotype associated with biofilm formation (1–5), it is logical to postulate the exis-

tence of a conserved genetic or biochemical basis for the biofilm defense against antibi-
otics. Hypothesizing the existence of this defense, we made these predictions: (i) a set of
conserved genes is differentially expressed in biofilms compared to planktonic genes (and a
subset of these genes can be associated with antibiotic tolerance), (ii) common genetically
encoded functions are differentially expressed in biofilms compared to planktonic cells (and
some of these shared functions can be associated with antibiotic tolerance), (iii) a set of con-
served genes is differentially expressed in biofilms in response to antibiotic treatment (and a
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MECHANISMS OF ACTION: PHYSIOLOGICAL EFFECTS
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subset of these genes can be associated with antibiotic tolerance), (iv) common genetically
encoded functions are differentially expressed in antibiotic-treated biofilms compared to
untreated biofilms (and some of these shared functions can be associated with antibiotic tol-
erance), (v) a common pattern of altered metabolism occurs in biofilm compared to plank-
tonic cells (and at least a part of this metabolic shift can be associated with antibiotic toler-
ance), and (vi) a common pattern of altered metabolism occurs in antibiotic-treated biofilms
compared to untreated biofilms (and at least a part of this metabolic shift can be associated
with antibiotic tolerance). We undertook to test whether these predictions hold across mi-
crobial species and antibiotic types by challenging biofilms formed by three different bacte-
ria with distinct antibiotics clinically appropriate for each organism.

RESULTS
Characterization of the biofilm response to antibiotic treatment. Comparing an-

tibiotic killing of the three bacteria between planktonic and biofilm modes of growth
demonstrated consistent reduced susceptibility of cells in biofilms (Table 1). The antibi-
otics used were ciprofloxacin for Pseudomonas aeruginosa, tigecycline for Acinetobacter
baumannii, and daptomycin for Staphylococcus aureus. Within a given bacterial species,
the drug concentration and duration of antibiotic exposure (24 h) was the same for plank-
tonic and biofilm challenges. All three untreated control biofilms contained approximately
109 CFU cm22. The biofilm tolerance factor (2) ranged from 1.7 to 3.6 (Table 1). These results
confirm that the drip-flow reactor biofilm model captured the commonly observed pheno-
type of antibiotic tolerance in the biofilm state for all three model organisms: P. aeruginosa
(5–27), A. baumannii (28–34), and S. aureus (35–43).

Biofilm compositions for each of the three bacterial species investigated are summarized
in Table 2. These measurements were made on the entire biofilm, i.e., cells and extracellular
polymeric substances together. In all cases, protein was the most abundant constituent, carbo-
hydrate was intermediate, and DNA was the least abundant constituent. Antibiotic treatment
of biofilms resulted in decreases in each of the three biomass constituents for all three species.
Averaging across the three species, antibiotic-treated biofilm contained 49% of the protein,
63% of the carbohydrate, and 63% of the DNA compared to their respective untreated control
biofilms.

Genes differentially expressed between biofilm and planktonic cells. A global tran-
scriptomic analysis was performed to identify genes that were differentially expressed
between 96-h-old drip-flow biofilms and planktonic cells (Table 3). Within each species,
transcripts significantly changing at least 2-fold at a P value of ,0.05 were selected for
use in this analysis. Some of the genes that changed between these two growth conditions
could be associated with reduced antibiotic susceptibility. We sought to discover any genes

TABLE 1 Antibiotic efficacy against planktonic and biofilm bacteriaa

Organism Antibiotic Concn (mg mL21) Xo, log10 (CFU cm22) LRP LRB TF
P. aeruginosa CIP 1 9.186 0.26 4.46 1.796 0.43 2.5
A. baumannii TIG 20 8.956 0.15 3.32 0.926 0.06 3.6
S. aureus DAP 10 9.356 0.17 2.356 0.29 1.376 0.18 1.7
aTF denotes the tolerance factor as defined in reference 2, which in this case is the log reduction against planktonic cells divided by the log reduction against biofilm (LRP/
LRB). Xo denotes viable cell areal density of the untreated control biofilm. CIP, ciprofloxacin; TIG, tigecycline; DAP, daptomycin. Uncertainties are indicated with standard
deviations.

TABLE 2 Biofilm compositiona

Condition Protein (mg cm22) Carbohydrate (mg cm22) DNA (mg cm22)
P. aeruginosa, untreated 3626 141 1846 20 13.96 1.5
P. aeruginosa, CIP treated 836 37 1096 16 10.76 2.5
A. baumannii, untreated 1346 49 306 10 5.16 1.9
A. baumannii, TIG treated 836 25 246 9 3.56 1.0
S. aureus, untreated 1196 32 546 15 7.16 2.2
S. aureus, DAP treated 736 52 276 20 3.06 1.5
aValues are given as the means6 standard deviations. CIP, ciprofloxacin; TIG, tigecycline; DAP, daptomycin.
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that changed consistently across the three organisms. We acknowledge at the outset that
our transcriptomic data are not spatially resolved. Microscale variation in gene expression is
known to be common in biofilm systems (16, 38, 44, 45).

We first searched for homology between the three species by inferring orthogroups
of protein-coding genes. Protein sequences from P. aeruginosa PAO1, S. aureus USA300
FPR3757, and A. baumannii AB5075 were analyzed using OrthoFinder (46) to identify orthol-
ogous groups containing all genes that descended from a single gene in the last common
ancestor of the three species. OrthoFinder is advantageous in that it automatically removes
gene length bias and phylogenetic distance from sequence similarity scores, making it one
of the most accurate and robust orthology inference methods available (47). It was found to
be the most accurate method on the Quest for Orthologs benchmark test (48, 49) and
was also more accurate than curated online database methods (47). The accuracy of its
key component algorithms has been independently assessed and validated (47), making
it an appropriate choice for providing a framework for extrapolation between the three
species in our study.

A summary of the OrthoFinder results can be found in Table S1 in the supplemental
material. By definition, the orthogroups contain both orthologs and paralogs. Of the
2,535 orthogroups identified by the analysis, 30% (763 groups) contained proteins
from all three species; 51% (1,283 groups) contained proteins from two of the species,
with the greatest number of groups from overlap of the two Gram-negative organisms,
P. aeruginosa and A. baumannii. The remaining 19% (489 groups) contained proteins from
within one species. All orthologous groups (81%, or 2,046 groups) that had homology across
two or three species were used for analysis in this study.

To further validate this approach, we compared the orthologous groups to results from
Xavier et al. (50). Xavier et al. used genome-scale metabolic modeling and data from pub-
lished large-scale essentiality assays from prokaryotic organisms to identify 28 highly con-
served cofactor biosynthesis genes (Table S2). Significant homologs for these genes were
found in greater than 86% of the 79 genomes in their modeling study. While two of the spe-
cies in our study were not investigated by Xavier et al. (only P. aeruginosa PAO1 was
included in their analysis), we would expect to find homology of these genes in our study as
well if the genes are in fact highly conserved and our approach is valid. Of the 28 conserved
cofactor biosynthesis genes identified by Xavier et al., 21 were found to be conserved across
the three species in our study, and an additional two were conserved in two of the species,
bringing the total percentage of biosynthesis genes with some conservation in our study to
86%. To determine if the overlap of orthologous groups found in all three of our species
was significant, P values were calculated using a negative binomial distribution. Finding 21
of the 28 cofactor biosynthesis genes within the 763 orthologous groups found in all three
species in our study does represent significant overlap (P , 0.00001), providing evidence
that the OrthoFinder analysis is valid.

Using the same approach, Xavier et al. (50) also investigated the conservation of
metabolic genes and found transport to be, by far, the most prevalently conserved
metabolic subsystem in the prokaryotic organisms analyzed. In particular, ABC transporters
had homology across most of the species. To test if transport genes also had homology
between the three species in our study, we first identified genes in Acinetobacter baumannii
whose annotation contained both the text “ABC” and “transport” within the description, and
we then evaluated if OrthoFinder identified homologs to these genes within the other two

TABLE 3 Changes in gene expression between biofilm and planktonic and antibiotic-treated
biofilm and untreated biofilm systemsa

Organism B:P, up in B B:P, down in B TB:B, up in TB TB:B, down in TB
P. aeruginosa 449 623 255 337
A. baumannii 259 157 692 492
S. aureus 232 321 59 29
aValues are the number of genes that changed in the indicated direction by a fold change of 2.0 or greater at
P, 0.05. B, biofilm; P, planktonic; TB, antibiotic-treated biofilm.

Biofilm Antibiotic Tolerance Antimicrobial Agents and Chemotherapy

April 2022 Volume 66 Issue 4 10.1128/aac.00021-22 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

ac
 o

n 
19

 A
pr

il 
20

22
 b

y 
15

3.
90

.1
18

.2
08

.

https://journals.asm.org/journal/aac
https://doi.org/10.1128/aac.00021-22


species. Acinetobacter baumannii was chosen due to its complete annotation available from
multiple sources. Annotation from the array manufacturer MYcroarray (now Arbor Biosciences,
Ann Arbor, MI), the Manoil Lab (51), NCBI, and the PATRIC, PFAM, Prosite, and Protein RefSeq
databases were examined, and 101 genes were identified from this search. Of the 101 genes
annotated to be involved with ABC transport, 33 were found to be present in orthogroups
containing all three species (P , 0.01), while 52 were found in orthogroups containing two
species (P , 0.001). Finding significant conservation of transport genes in the orthologous
groups in our study provided further support of the validity of our approach.

Since the OrthoFinder program and its identification of homology in A. baumannii,
S. aureus, and P. aeruginosa were found to be sound, the resulting orthogroups were used
to measure the similarity of these organisms’ responses to the biofilm mode of growth to
determine if this response was also conserved across the three species. Genes upregulated
in biofilms compared to planktonic cultures (Table 3) were evaluated for homologs across
the species. For example, of the 232 genes upregulated in S. aureus biofilms, 53 were con-
served across the three species, while homologs for 10 were found in P. aeruginosa and for
seven were found in A. baumannii. Table S2 summarizes the level of homology for each spe-
cies and condition of interest, and it serves as a quality control that homology was indeed
found and further analysis was appropriate. Next, the orthogroups for the upregulated
genes in each species (51 S. aureus, 55 P. aeruginosa, and 31 A. baumannii groups that
were found in three species) were searched for a common response across the three spe-
cies. Only one orthogroup was found to be upregulated in the biofilm mode of growth in
all three species, which does not represent a significantly conserved response (P . 0.99),
as calculated by a hypergeometric distribution. The orthogroup upregulated in biofilms in
all three species (OG0000123) contained the ATP-dependent chaperone ClpB as well as
the related proteins ClpA and ClpC in S. aureus.

After finding no significantly conserved upregulated gene response to the biofilm
mode of growth, the genes downregulated in biofilms in the three species were then
searched for homology. The genes downregulated in biofilms compared to planktonic
cultures were also adequately represented in the OrthoFinder analysis. Of these, four
orthogroups were found to contain genes downregulated in all three species (Table S2).
This does not represent a significantly similar response in biofilm gene downregulation
(P = 0.93), as this number would be expected to be found by chance.

Another approach to comparing the differentially expressed genes between the three
microbial species is to organize the affected genes into functional groups. This approach
is expected to be less stringent than the analysis based on sequence homology. To do
this, manually curated lists of genes that changed between biofilm and planktonic condi-
tions were prepared for each microorganism (Table 4). These gene sets were then inspected
to identify similar functional groups that changed in the same direction for more than one
organism. These common gene sets are highlighted in boldface in Table 4. The only gene
set that was common across all three microorganisms was for genes associated with stationary
phase.

Mature biofilms are known to exhibit growth limitation, starvation responses, and
stationary-phase character (7, 13, 14, 20, 38, 45, 52–59). Working from the literature, we
built custom gene lists defining the gene set induced in stationary phase in each of the three
microorganisms (60–67) (see the supplemental material). For each bacterium, statistically sig-
nificant overlap between the stationary-phase gene set and our biofilm-induced gene set was
determined (Table 5). This preliminary finding supports the hypothesis that all three biofilms
experience restriction of growth and express some stationary-phase character. The gene sets
for each of the three microorganisms, however, display little specific or functional overlap (68).

It is interesting that biofilms of all three species, grown in the drip-flow reactor on artificial
chronic wound exudate (ACWE) medium, elaborated virulence factors and metabolisms that
may be relevant in vivo. For example, P. aeruginosa biofilms produced phenazines, quorum-
sensing-regulated proteases, and systems for acquisition of iron and zinc. P. aeruginosa biofilm
cells expressed genes consistent with hypoxia (52), including those for denitrification and
pyruvate metabolism. A. baumannii biofilms robustly expressed a pathway that degrades
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phenylacetic acid (67), a response that has been shown to diminish neutrophil recruitment
in vivo (69). S. aureus biofilms expressed systems for acquiring iron and zinc and made
numerous known host-binding proteins, leukotoxins, and other virulence factors. S. aureus
biofilms exhibited metabolic shifts toward fermentation of pyruvate, serine, and alanine,
denitrification, and the arginine deiminase pathway. These physiologies were expressed
even though ACWE contains no host cells or host factors. We compared the genes increas-
ingly expressed in our S. aureus drip-flow biofilms (count, 449) to the gene list reported by
Xu et al. (70) to be upregulated in a human prosthetic joint infection (count, 232). There
were 128 genes that overlapped, a highly significant commonality (P , 10214). Indeed,
this overlap is at least as strong as the overlap between our S. aureus biofilm and other in

TABLE 5 Bacterial biofilms express genes associated with stationary phasea

Organism
No. of genes
upregulated in SP

No. of genes upregulated
in biofilm

No. of genes
on both lists

P value for
overlap

P. aeruginosa 120 449 85 ,10215

A. baumannii 37 259 17 4� 10211

S. aureus 283 232 75 ,10215

aFor each microorganism, a list of genes that are expressed at higher levels in stationary-phase (SP) compared to
exponential-phase planktonic cultures was compiled from published literature (see the supplemental material).
The overlap between these lists and the genes expressed at higher levels in biofilms compared to planktonic
cultures in this study was determined.

TABLE 4 Gene sets differentially expressed between biofilm and planktonic conditionsa

P. aeruginosa and expression
direction in biofilm A. baumannii S. aureus
Up
Stationary phase Stationary phase Stationary phase
NO3

2/NO2
2/NOmetabolism Phenylacetic acid degradation Iron acquisition

Phenazine biosynthesis Antibiotic resistance Host binding/virulence
HSL quorum sensing Valine degradation Pyruvate/Ser/Ala fermentation
Pyochelin biosynthesis (iron) PNAG synthesis Superantigen-like proteins
Bacteriophage Pf1 Trehalose synthesis Zn transport
Type IV pili NO3

2/NO2
2/NOmetabolism

ClpA/B Leukotoxins/lysins
Zn transport/Zn limitation Pro, His, Arg catabolism
Pyruvate fermentation Lantibiotic
Oxidative stress Arginine deiminase pathway

Sae regulatory
Peptidoglycan recycling

Down
Ribosome Amino acid transport DNA synthesis/topoisomerase
Purine metabolism Oxidative stress Lysine biosynthesis
Amino acid—tRNA ligase Pilus related Leucine biosynthesis
DNA replication Competence
Cys/Met biosynthesis Peptide transport
NADH-quinone oxidoreductase Cys/Met biosynthesis or uptake
Lipopolysaccharide Amino acid-RNA ligase
Tricarboxylic acid cycle Queuosine synthesis
ATP synthase
PQS biosynthesis
Fatty acid biosynthesis
Cobalamin biosynthesis
EMP pathway
Histidine biosynthesis
Peptidoglycan synthesis
Arginine biosynthesis
Vitamin B6 metabolism
Lysine biosynthesis
Pyrimidine metabolism
Riboflavin
RNA polymerase

aBoldface indicates a gene set that was differentially expressed in more than one microorganism.
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vitro biofilm investigations (71–74). This leads us to hypothesize that substantial features
of the in vivo bacterial phenotype are manifest in response to in vitro growth as a biofilm
on a medium that simulates the in vivo chemical microenvironment (75, 76).

Genes differentially expressed between untreated biofilm and antibiotic-treated
biofilm. Exposure of biofilms to antibiotics resulted in changes in gene expression in
all three of the biofilms examined (Table 3). We wondered if some of the changes observed
were the same between the three microbial species, as these shared genes could represent
a common biofilm-specific protective mechanism. Transcripts changing at least 2-fold at a
P value of,0.05 in response to the addition of antibiotics were selected for use in this anal-
ysis. However, when the same validated OrthoFinder analysis was performed, no similar
responses in gene regulation to antibiotics was found in the three species. There were no
orthogroups found to be upregulated or downregulated in all three species in response to
antibiotic treatment.

Inspecting identified functional groups of genes that change in response to antibiotic
treatment (Table 6) revealed possible decreases in expression of genes associated with
iron acquisition and pili in both P. aeruginosa and A. baumannii. No gene functional category
was shared across the three bacteria when exposed to antibiotic.

Metabolomic comparison of biofilm and planktonic cells and of untreated
biofilm and antibiotic-treated biofilm. The utilization and production of extracellular
metabolites was compared between planktonic and untreated biofilm systems to iden-
tify possible common changes in cellular metabolism between the two growth modes.
Extracellular metabolomic analyses were performed to determine concentrations of 18
amino acids, lactate, glucose, acetate, formate, and ethanol in the supernatant of
planktonic cultures and effluent of biofilm reactors. The amount of each substrate con-
sumed or metabolic product produced was normalized by the total carbon utilized by
each system. Results of this analysis for P. aeruginosa were previously published (52).

All three bacteria consumed glucose, lactate, and amino acids in both planktonic
and biofilm growthmodes. P. aeruginosa produced acetate as a metabolic product during bio-
film growth, and S. aureus biofilms produced acetate, formate, and ethanol. Neither organism
produced detectable amounts of these products in planktonic growth. There was net produc-
tion of some amino acids during biofilm growth of A. baumannii and S. aureus. Across the
three species, the only metabolites whose normalized utilization changed consistently (in the
same direction and by a fold change of 1.5 or greater) were glucose, alanine, and aspartic acid
(Table 7). Glucose consumption was increased in biofilms compared to planktonic cells, and al-
anine and aspartic acid utilization was decreased in biofilms compared to planktonic cells.

TABLE 6 Gene sets differentially expressed between antibiotic-treated biofilm and untreated biofilm conditionsa

P. aeruginosa and increase/decrease in
expression in treated biofilm A. baumannii S. aureus
Up
Bacteriophage Pf1 Benzoate degradation Cell wall stress
Purine metabolism DNAmetabolism
SOS response Malonate metabolism
Cell wall synthesis/shape Iron-Sulfur protein
Amino acid tRNA ligase Arsenic resistance
Glyoxylate shunt Adipic acid degradation

PNAG synthesis

Down
Protein secretion-T6SS Iron acquisition Possible phage
HSL quorum sensing NADH-quinone oxidoreductase
Phenazine biosynthesis TCA cycle
Pyochelin biosynthesis (iron) Pilus related
Type IV pili Cytochromes
Pyoverdine biosynthesis (iron) ATP synthase

Fatty acid oxidation
Valine degradation
Phenylacetic acid degradation

aBoldface indicates a functional group that appears on more than one list.
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The same extracellular metabolomic analysis was performed to characterize shifts in
metabolism between control (untreated) biofilms and biofilms treated with antibiotics
for 24 h. Overall trends in the cumulative utilization of substrates and excretion of met-
abolic products are summarized in Table 8. Treatment of P. aeruginosa biofilms with
antibiotic had no effect on the combined uptake of lactate, glucose, and amino acids.
Antibiotic treatment of the biofilm reduced acetate production (the sole metabolic
product detected in this analysis for P. aeruginosa). A. baumannii biofilms exhibited a
36% decrease in substrate utilization after antibiotic treatment. Treatment of S. aureus
biofilms with antibiotic reduced the combined uptake of carbonaceous substrates by
66% and reduced the excretion of products by 30%.

Note that the reductions in substrate utilization were much smaller than the reductions
in viable cell counts (Table 1). For example, viable cells in P. aeruginosa biofilms treated with
ciprofloxacin were reduced by 99%, but there was no change in overall substrate uptake. A.
baumannii biofilms treated with tigecycline exhibited an 85% reduction in viable cells but
only a 36% reduction in substrate uptake. For S. aureus biofilms treated with daptomycin,
viable cells were reduced by 96% compared to the 66% reduction measured in overall sub-
strate uptake. These comparisons suggest that even though antibiotic-exposed cells from a
biofilm have lost the ability to form a colony on a plate, they may continue to manifest met-
abolic activities. There were no consistent patterns of relative metabolite utilization or pro-
duction that were the same for all three organisms when comparing untreated with antibi-
otic-treated biofilms.

DISCUSSION

One of the most consistently described phenotypic characteristics of microbial biofilms is
tolerance to antimicrobial agents of all kinds (1–5). Given this nearly universal protection in
the biofilm state compared to planktonic cells, it is reasonable to hypothesize that there is a
common genetically encoded basis for this defense. We sought to uncover evidence of such
a shared tolerance gene, gene set, or pathway by investigating three bacterial species, each
grown as single-species biofilms under conditions that simulated the chemical and physical
environment in a human chronic dermal wound. These conditions included a synthetic me-
dium containing lactate, glucose, and a cocktail of amino acids, an air interface across which
oxygen could be transferred, a representative temperature (33°C), and a slow continuous
flow of the medium. The three microorganisms represent two Gram negatives (P. aeruginosa
and A. baumannii) and a Gram positive (S. aureus). Each biofilm was challenged with an anti-
biotic appropriate to the microorganism. The three drugs represented three distinct classes

TABLE 7 Fold changes in normalized metabolite utilization that were in the same direction
for all three bacterial species and greater than 1.5-fold different between the planktonic and
untreated biofilm conditionsa

Organism Glucose Alanine Aspartic acid
P. aeruginosa 9.6 0.64 0.50
A. baumannii 1.9 0.42 0.28
S. aureus 2.2 0.26 0.63
aValues greater than 1 indicate higher relative consumption in the biofilm than the planktonic condition. Values
less than 1 indicate lower relative consumption in the biofilm compared to planktonic conditions.

TABLE 8 Utilization of substrates and excretion of products by untreated biofilms and
antibiotic-treated biofilmsa

Organism

Substrate utilization Product excretion

Biofilm Treated biofilm Biofilm Treated biofilm
P. aeruginosa 49.7 49.9 2.8 0.9
A. baumannii 34.3 22.0 4.9 5.5
S. aureus 32.6 14.3 11.6 8.2
aConcentrations are given as mM carbon.
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of antibiotics: a fluoroquinilone, a tetracycline, and a cyclic lipopeptide. We reasoned that if
a robust and consistent gene-based defense mechanism exists, it should be discernible
across a variety of species and also for diverse antibiotics. Although antibiotic-specific
responses are certainly anticipated, the conjecture we are testing in this work is that there
is a biofilm-specific response to stress that is universal across organisms. By keeping the
growth conditions the same, we reduced variations due to changes in experimental condi-
tions. All three bacteria were less susceptible to killing by antibiotics when grown as bio-
films compared to planktonic cells (Table 1). This result accords with many prior reports
using these bacterial species (5–43).

Our first prediction was that there would be a shared set of conserved genes
expressed in the same differential fashion between planktonic and biofilm bacteria for
the three organisms. We did not find any such gene set shared across the three spe-
cies. A single orthogroup was common in the biofilm-upregulated genes of the trio of
bacteria, a degree of overlap too small to be considered statistically significant. Four
orthogroups were shared in the genes downregulated in biofilms, also a degree of
overlap that did not reach statistical significance. When the requirement for strict gene
conservation was relaxed to examine shared functions (prediction number ii from the
Introduction), we identified only a single functional category of genes, those associ-
ated with the transition from exponential to stationary phase, that was common to all
three microorganisms. Several functions were shared by P. aeruginosa and S. aureus,
including indications of increased denitrification and pyruvate fermentation in biofilms
compared to planktonic cells. Both of these functions are plausible adaptive responses
to oxygen limitation in the biofilm. Both P. aeruginosa and S. aureus also expressed
genes associated with iron sequestration and zinc transport, suggesting that these
metals become scarcer in the biofilm mode of growth. Clear evidence of quorum-sens-
ing activity in the biofilm was found for only one of the three bacteria, P. aeruginosa.

The second prediction following from our hypothesis was that there would be a
shared transcriptomic response to antibiotic exposure across the three species. We
found no examples of shared genes by sequence homology, neither upregulated or
downregulated, across the three microorganisms. The related prediction (number iv)
that common functional groups rather than specific genes occur in response to antibi-
otics was evaluated by manually curating genes into functional groups. No functional
group common to all three bacteria could be identified. If we had used an antibiotic
from the same class for all three microorganisms, we would have expected to find
some commonalities among the transcriptomic responses to the drug. We would also
predict that these responses would be similar to known responses that have been
described in planktonic cells; this was indeed the case. For example, prior work with
ciprofloxacin-treated P. aeruginosa has reported induction of genes involved in the
SOS response (77–79), and we also observed upregulation of this gene set. Prior work
with daptomycin-treated S. aureus has reported induction of genes associated with cell
wall stress (80, 81), which we also measured. Hua et al. (82) reported suppression of
the aerobic phenylacetate catabolic pathway after exposure of A. baumannii to tigecy-
cline, and we also identified this behavior. By using antibiotics from different classes,
we sought to discover biofilm-specific tolerance mechanisms that are distinct from
known responses to particular antibiotics. Again, no such gene set could be discerned.

A limitation of our transcriptomic approach is that it cannot identify changes that
are posttranscriptionally or posttranslationally regulated. For example, extracellular
polysaccharide synthesis in biofilm can be regulated both at the transcriptional and at
the posttranscriptional level (83) with the secondary messenger molecule cyclic-di-
GMP, which is required for synthesis of some extracellular polysaccharides (84–87).

Our third prediction was that there could be a consistent shift, across the three bacte-
ria, in the pattern of consumption of metabolic substrates either between the biofilm and
planktonic growth modes or between the antibiotic-treated biofilm and untreated biofilm
conditions. Biofilm microorganisms did consistently consume more glucose (as a percent-
age of total carbon utilization) than planktonic cells. One possible explanation for this shift
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is an increased synthesis of extracellular polysaccharides starting from glucose in biofilm
cells. Of the three bacteria, only A. baumannii revealed an upregulation at the transcriptional
level of polysaccharide biosynthetic genes in biofilms. The decreased utilization of alanine
and aspartic acid in biofilms compared to planktonic cells was not evident in the transcrip-
tomic comparisons.

Overall, our measurements do not support the existence of a shared genetic or bio-
chemical basis for biofilm tolerance against antibiotics across bacterial species. Rather,
each microorganism appears to exhibit distinct patterns of gene expression and functional
shifts in response to growth in a biofilm and subsequent antibiotic treatment. We hypothe-
size that multitudinous and redundant molecular mechanisms have evolved that implement
tolerance in biofilms and that these vary by taxa and even by strain. The variety of these
mechanisms and their possible redundancy would underpin a very robust defense. Thus,
there is likely no common molecular Achilles’ heel for all biofilms.

Susceptibility testing of defined genetic mutants for defects in biofilm tolerance to
antibiotics is a powerful experimental approach that we did not use in this study but
that we and others have used previously. A wide variety of mutations in genes that reduced
antibiotic tolerance have been identified (1, 11, 12, 14, 15, 17–22, 24, 39, 52, 88–99), but only
a couple of recurrent themes emerge from studies reproduced in more than one laboratory.
In P. aeruginosa, biofilms formed by mutants deficient in synthesis of varied extracellular
polysaccharides are often more susceptible to killing by antibiotics (52, 91, 93–98). The strin-
gent response, mediated by the alarmone ppGpp, has been shown to contribute to biofilm
defense in P. aeruginosa, S. aureus, and Enterococcus faecium (14, 20, 52, 100, 101).

We propose the following general conceptual model for how antibiotic tolerance manifests
in biofilms (52). In the earliest stages of biofilm formation, there is little change in the chemical
microenvironment because cell aggregates are small. Diffusion is rapid enough over these
short distances that oxygen and other metabolic substrates fully permeate biofilm structures
(102). Metabolic products are likewise readily cleared from the biofilm by diffusion. In this early
phase, microbial cells exhibit rapid growth and relatively high antibiotic susceptibility (2). As
biofilm aggregates increase in size, reaction-diffusion interactions lead to the development of
gradients in the concentrations of metabolic substrates and products (54). Metabolic sub-
strates are at reduced concentrations in the biofilm interior, whereas metabolic products are
at elevated concentrations in the biofilm interior. This chemical heterogeneity causes shifts in
the metabolism and gene expression of the microorganisms as the bacteria respond to the
local microenvironment (16, 38, 44, 45). These changes could include, for example, (i) depletion
of oxygen, leading to induction of responses to hypoxia and shifts to denitrification or fermen-
tation pathways, (ii) increased synthesis of extracellular polymeric substances, (iii) increased rel-
ative consumption of sugar substrates to support synthesis of extracellular polysaccharides,
(iv) depletion of metal cations as they are sequestered by binding to extracellular polymeric
substances or utilized for cellular enzymes, (v) induction of systems to acquire depleted metal
cations, and (vi) accumulation of quorum-sensing molecules leading to increased biosynthesis
of quorum-sensing controlled products. As local chemical conditions persist or exacerbate,
additional stress responses might be induced, for example, (i) acid stress in response to accu-
mulation of fermentation end products such as carboxylic acids that lower the local pH, (ii) oxi-
dative stress due to unbalanced metabolisms, and (iii) starvation stress responses. Sustained
substrate limitation is expected to result in these possible outcomes: (i) reduced anabolism
and diminished expression of cellular machinery for transcription, translational, and replication,
(ii) reduced specific growth rates, including enrichment of nongrowing cells, and (iii) entry of
some cells into protected dormant states, possibly involving ribosome hibernation (103–105).
This collection of hypothesized physiological changes occurs prior to antibiotic treatment and
leads to biofilms cells occupying a spectrum of states all of which have the potential to con-
tribute to antibiotic tolerance. Finally, antibiotic exposure is expected to induce adaptive
responses that further enhance antibiotic tolerance (11, 106, 107).

MATERIALS ANDMETHODS
Bacterial strains and culture medium. P. aeruginosa PAO1 (108), Staphylococcus aureus USA300

FPR3757 (109, 110), and Acinetobacter baumannii AB5057 (111) were cultured individually using a medium
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designed to mimic the exudate from a human chronic wound (52), referred to as artificial chronic wound exudate
(ACWE) medium. ACWE was composed of basal salts, amino acids, L-lactate, glucose, MgCl2, CaCl2, thiamine, nico-
tinic acid, and FeSO4, adjusted to pH 7.5, as described in Stewart et al. (52). When used, antibiotics were added at
these final concentrations: ciprofloxacin, 1 mg/liter; daptomycin, 10 mg/liter; tigecycline, 20 mg/liter. Some of the
data from P. aeruginosa experiments have been published previously (52).

Planktonic culture conditions. Planktonic cultures were prepared by inoculating 100 mL of ACWE
medium with 1 mL of an overnight culture in 500-mL baffled Erlenmeyer flasks. Cultures were incubated to
early exponential phase for each species (optical density [OD] of 0.25, 1 � 108 CFU mL21 for PAO1; OD of 0.50,
3� 108 CFU mL21 for AB5075; and OD of 0.10, 1. 3� 108 CFU mL21 for USA300) at 33°C (the approximate sur-
face temperature of a dermal wound). Cells were harvested by centrifugation at 5,125 � g for 5 min at 4°C in
an Allegra X-15R centrifuge (Beckman Coulter, Brea, CA) and frozen at280°C for use in metabolomic and tran-
scriptomic studies. A minimum of three independent biological replicates was performed for each species.

To measure killing of suspended cells, planktonic cultures of P. aeruginosa and A. baumannii were
prepared by inoculating 0.5 mL of overnight cultures into 25 mL of ACWE medium in 250-mL baffled
Erlenmeyer flasks. For S. aureus, a colony from an overnight plate was used to inoculate the medium.
The cultures were incubated until reaching an optical density of 0.20 to 0.50 (early logarithmic phase) at
33°C on an orbital shaker at 200 rpm. The cultures were then serially diluted in phosphate-buffered sa-
line (PBS) and plated on tryptic soy agar (TSA) to determine initial bacterial density. Each culture was
then divided into two 10-mL aliquots and one was treated with antibiotic, leaving the other as a control.
Antibiotics and treatment concentrations were as given in Table 1. The treated and control cultures
were then incubated statically at 33°C for 24 h. The cultures were then serially diluted in PBS and plated
on TSA to determine final bacterial density.

Biofilm growth conditions. Biofilms were grown as described in Stewart et al. (52) (see Fig. S1 in
the supplemental material). Briefly, biofilms were cultivated on hydroxyapatite-coated glass slides
(Clarkson Chromatography, South Williamsport, PA) in a drip-flow reactor (DFR) designed by Biosurface
Technologies Corp., Bozeman, MT (112). Five milliliters of exponential-phase culture in ACWE was added
to each channel of the DFR and incubated for 1 h at 33°C to allow for cell attachment. Following the
batch phase, a MasterFlex L/S model 7519-20 peristaltic pump (Cole-Parmer, Vernon Hills, IL) was started
at a flow rate of 10 mL/h, and biofilms were cultivated at 33°C for 72 h. ACWE medium containing the or-
ganism-specific antibiotic was then pumped through the treatment chambers, while ACWE without anti-
biotic continued to flow through the untreated control chambers for 24 h. After a total of 96 h of
growth, biofilms were harvested by scraping into 10 mL phosphate-buffered saline (PBS). The cell sus-
pension was homogenized by vortexing and passage through an 18-gauge, 1.5-inch-long Precisionglide
needle (Beckton Dickinson and Co., Franklin Lakes, NJ). Cell pellets were collected by centrifugation and
placed in a 280°C freezer. A minimum of three biological replicates were performed with each species.

Quantification of protein, carbohydrates, and DNA in biofilms. Total protein in biofilm samples
was quantified by the Bradford assay (113) as described in reference 52. Total carbohydrates from bio-
film samples were quantified using the phenol-sulfuric acid described in reference 114, with modifica-
tions for total carbohydrate analysis of biofilms described in reference 50. D-(1)-galactose (Sigma-Aldrich, St.
Louis, MO) was used to generate standard curves. DNA was isolated and quantified from Pseudomonas aerugi-
nosa and Acinetobacter baumannii biofilm samples using the QIAamp miniprep kit (Qiagen, Germantown, MD)
as described in Stewart et al. (52). To isolate DNA from Staphylococcus aureus biofilms, cell pellets were resus-
pended in a solution of Tris-EDTA (TE) containing 0.5 mg/mL lysostaphin (AMBI Products, LLC, Lawrence, NY)
and 3.0 mg/mL lysozyme (Millipore Sigma, Burlington, MA). Following a 60-min incubation, DNA extraction
was carried out with the QIAampDNA minikit (Qiagen, Germantown, MD) according to the manufacturer’s
instructions, with an RNase A treatment to obtain RNA-free genomic DNA. DNA was measured on a NanoDrop
1000 (Thermo Fisher Scientific, Waltham, MA) a minimum of three times for each biological sample.

Preparation of RNA. RNA was previously extracted, purified, and quantified from Pseudomonas aer-
uginosa planktonic, biofilm, and treated biofilm cells as described in Stewart et al. (52). RNA extraction
from Acinetobacter baumannii samples proceeded similarly. Briefly, frozen Acinetobacter baumannii cell pellets
were resuspended in 100 ml TE-lysozyme, with the lysozyme concentration at 5 mg mL21. Following a 3-min
room temperature incubation, Tri-reagent (Zymo Research, Irvine, CA) was added and the samples were further
incubated for 5 min at room temperature. After the addition of an equal volume of 100% ethanol, the mixture
was applied to a Zymo-Spin IIC column. RNA extraction was performed using the Direct-Zol Mini-Prep kit
(Zymo Research, Irvine, CA) per the manufacturer’s instructions, including an on-column DNase treatment.
Samples were then treated with Turbo DNase (Thermo Fisher Scientific, Waltham, MA) by following the rigor-
ous treatment protocol in the presence of 1 ml of RnaseIn Plus (Promega, Madison, WI). Next, samples were
applied to Clean and Concentrator-25 columns (Zymo Research, Irvine, CA) by following the manufacturer’s
procedure for recovery of total RNA greater than 200 nucleotides in size.

RNA extraction from Staphylococcus aureus was modified slightly to increase lysis efficiency from this
Gram-positive organism. Briefly, cell pellets from planktonic cultures, biofilms, and treated biofilms were
incubated for 2 min at 37°C in TE, pH 8.0, containing 0.5 mg/mL lysostaphin and 3.0 mg/mL lysozyme
with frequent vortexing. Following the addition of 1 mL of Tri-reagent (Zymo Research, Irvine, CA), sam-
ples were incubated for 5 min at room temperature and then for 5 min at 65°C with vortexing. After the
addition of an equal volume of 100% ethanol, the mixture was applied to a Zymo-Spin IIICG column.
RNA extraction was performed using the Direct-Zol Mini-Prep kit (Zymo Research, Irvine, CA) per the
manufacturer’s instructions, including on-column DNase treatment. Samples were then treated with
Turbo DNase (Thermo Fisher Scientific, Waltham, MA) by following the rigorous treatment protocol in
the presence of 1 ml of RnaseIn Plus (Promega, Madison, WI). Next, samples were applied to Clean and
Concentrator-25 columns (Zymo Research, Irvine, CA) by following the manufacturer’s procedure for
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recovery of total RNA greater than 200 nucleotides in size. For all samples, RNA quality was assessed on
the BioAnalyzer 2100 (Agilent, Santa Clara, CA) RNA6000 nano-assay.

Microarray analysis. Pseudomonas aeruginosa RNA samples were prepared and hybridized to
Affymetrix (now ThermoFisher Scientific, Waltham, MA) P. aeruginosamicroarrays (part 900339) previously (50).

Staphylococcus aureus RNA samples (10 mg) were also reverse transcribed, fragmented, and labeled
according to the Affymetrix prokaryotic target labeling protocol (GeneChip expression analysis technical
manual, November 2004). Labeled cDNA was then hybridized to GeneChip S. aureus genome arrays (part
9003514; Applied Biosystems, ThermoFisher Scientific, Waltham, MA) for 16 h at 45°C with constant rota-
tion. Microarrays were stained using a GCOS Fluidics Station 450 and scanned with an Affymetrix 7G scan-
ner. Affymetrix GCOS v1.4 was used to generate CEL files, which were imported into FlexArray v1.6.1 for
quality control and data analysis.

Acinetobacter baumannii RNA samples were prepared for custom microarrays for Acinetobacter bau-
mannii 5075 designed and manufactured by MYcroarray (now Arbor Biosciences, Ann Arbor, MI) in the
following manner. Random hexamer primers (1 ml; Invitrogen, now ThermoFisher Scientific, Waltham,
MA) were annealed to 9 mg of RNA in the presence of 1 ml RNaseIn Plus (Promega, Madison, WI) during
a 10-min 70°C incubation. After a 30-s incubation on ice, RNA was reverse transcribed at 42°C overnight
using the following reagents from Invitrogen (now ThermoFisher Scientific, Waltham, MA): 5.5 ml 5�
first-strand buffer, 3 ml 0.1 M dithiothreitol (DTT), 0.6 ml 25 mM modified deoxynucleotide triphosphate
(dNTP) mix (2:1 ratio of amino-allyl dUTP to dTTP), and 2 ml Superscript II. After synthesis, the remaining
RNA was hydrolyzed by the addition of 0.5 M EDTA and 1 N sodium hydroxide at 70°C for 15 min. Next,
resulting cDNA samples were neutralized with 1 N HCl and applied to Clean and Concentrator-25 col-
umns (Zymo Research, Irvine, CA) according to the manufacturer’s instructions, with the substitution of
a modified wash buffer (5 mM KPO4, 80% ethanol) as specified in SOP#M007 (JCVI, Rockville, MD). The
resulting cDNA was assessed for quantity and purity with a NanoDrop 1000 (ThermoFisher Scientific,
Waltham, MA). It was then dried to completion for 30 min without heat in an RC10.10 Vacufuge (Jouan,
Inc., Winchester, VA) and resuspended in 5 ml sodium carbonate buffer, pH 9.3. Each cDNA sample was
labeled with Cy 3 dye (GE Healthcare, Chicago, IL) for a minimum of 90 min at room temperature, pro-
tected from light, with mixing every 30 min. The reaction was quenched with 40 ml 0.1 M sodium ace-
tate, pH 5.2. Unincorporated dye molecules were removed with Clean and Concentrator-25 columns
(Zymo Research, Irvine, CA). Quantities and incorporation rates were assessed with a NanoDrop 1000
(ThermoFisher Scientific, Waltham, MA). Samples hybridized to microarrays contained a minimum of
1,500 pmol Cy dye and 4 mg cDNA. Custom microarrays were designed by MYcroarray (now Arbor
Biosciences, Ann Arbor, MI) specifically for Acinetobacter baumannii AB5075, with 5 replicate probes for
every transcript. Four independent biological replicates were performed for each of the three conditions,
for a total of 12 microarrays. A hybridization mixture containing 6� saline sodium phosphate EDTA
buffer (SSPE), 20% formamide, 0.12 mg acetylated bovine serum albumin (BSA), 0.02% Tween 20, 1%
MYcroarray control oligonucleotides, 10 mg salmon sperm, and 4 mg cDNA in a 130-mL final volume was
prepared for each sample. This was mixed, incubated at 65°C for 5 min, and then kept on ice for 5 min.
The hybridization chamber (G2534A; Agilent), gasket slide (G2534-60011; Agilent Technologies), and
MYcroarray slide (custom slide array CAT-3x20k-Acinetobacter_baumannii_AB5075) were preheated to
65°C. Samples were hybridized to the microarray for 18 h at 48°C and secured to the front of a culture
roller with constant vertical rotation at 1.7 rpm. Array slides were then liberated from the gasket slide in
1� SSPE and washed with gentle agitation on a rocker (Boekel Scientific, Feasterville, PA). The washes
were performed with 1� SSPE at room temperature for 3 min, 1� SSPE at room temperature for 3 min,
1� SSPE at 48°C for 3 min, and then 0.25� SSPE at room temperature for 30 s. The slides were spun for
1 min in a high-speed microarray centrifuge (ArrayIt Corporation, Sunnyvale, CA). Image acquisition was
performed on the GenePix 4000B scanner (Molecular Devices, San Jose, CA) at 532-nm wavelength, a
PMT gain of 600, 100% laser power, and pixel size of 5, with averaging of 3 lines. Resulting images were
saved as tiff files and converted to intensity values with GenePix Pro v6.1 software.

Transcriptomic data analysis. Pseudomonas aeruginosamicroarray data from three independent bi-
ological replicates from each condition (planktonic, biofilm, and treated biofilm) was background cor-
rected and normalized using the GC-RMA algorithm in Flexarray 1.6.1 as published in Stewart et al. (52).
Analysis of variance (ANOVA) was performed to determine genes with statistically significant changes in
expression (2-fold change at a P value of,0.05).

Staphylococcus aureus microarray data from three independent biological replicates was processed
in the same manner to identify genes with statistically significantly changes in expression between the
conditions at 2-fold change and a P value of,0.05. Strain USA300_FPR3757 was hybridized to Affymetrix
S. aureusmicroarrays that contain probes designed for the following four strains: N315, Mu50, NCTC 8325, and
COL. To interpret the data, Affymetrix identifiers (IDs) from the four strains were converted to USA300 gene IDs
based on PanGenome identifiers from AureoWiki, the repository of the Staphylococcus aureus research and
annotation community (115). USA300_FPR3757 has 2,639 PAN IDs, and there are 91 genes completely unique
to USA300, which were not represented on the arrays. Therefore, the final resulting data contain a concise list
of USA300 identifiers most similar to the sequences present on the array, representing approximately 89% cov-
erage of strain USA300_FPR3757 open reading frames.

Gpr files of Acinetobacter baumannii array data were imported into Flexarray v.1.6.1, where local
background correction and quantile normalization were performed. Resulting normalized median pixel
intensity values for each probe were exported to Excel, where the trimmed mean was calculated and
combined with annotation obtained from MYcroarray, PATRIC, NCBI, and the Manoil group. Trimmed
means were reimported in to Flexarray 1.6.1, and ANOVA was performed to determine differentially
expressed gene at a P value of ,0.05 and fold change of .2.
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OrthoFinder analysis. We used OrthoFinder to identify orthologs, paralogs, and orthogroups from
the protein sequences of the three species. OrthoFinder (version 2.4.1) was downloaded at https://github.com/
davidemms/OrthoFinder. The main parameters of OrthoFinder were set as follows. The sequence search pro-
gram was set to diamond, the method for gene tree inference was set to dendroblast, and the MCL inflation pa-
rameter was set to 1.5. Orthogroups in common were identified using Excel version 2102 and Venny 2.1 (116).

Overlap analysis. Gene set enrichment analysis was performed by determining the overlap between
the gene lists from this study and gene lists compiled from the literature as described previously (20). P val-
ues for assessing the statistical significance of gene set enrichment were calculated using a negative bino-
mial distribution.

Analysis of extracellular metabolites by gas chromatography-mass spectrometry (GC-MS).
Extracellular metabolite samples from biofilms were collected from DFR effluent lines into 15-mL Falcon
tubes (Corning Inc., Corning, NY). Collection lines were unclamped and allowed to drain for approximately 1 h.
Samples were capped and placed in a 280°C freezer. After biofilms were harvested, stock medium and cipro-
floxacin-containing medium were collected in 50-mL Falcon tubes and frozen at 280°C. Extracellular metabo-
lites from planktonic cultures were collected by decanting and freezing the supernatant from the pelleting
process. Extracellular metabolite samples were thawed, and 1-mL aliquots were dried under a nitrogen
stream. Prior to analysis, samples were derivatized using the method described below that enabled the
consistent detection of 17 amino acids and three central carbon metabolites. Two additional central carbon
metabolites, formate and acetate, were detected as underivatized compounds in aqueous solution using a ZB-
WAX column.

N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) was obtained from Sigma (CAS
77377-52-7; Sigma-Aldrich, Switzerland). Acetonitrile (ACN) solvent was obtained from Fisher (CAS 75-
05-8; Fisher Scientific). Hexanes solvent was obtained from Fisher (CAS 110-54-3). Formic acid and acetic
acid were obtained from Fisher. The remaining central carbon metabolites were obtained from Sigma.
All amino acids were purchased from Sigma.

Analysis of samples was carried out using an Agilent 7890A GC oven system, coupled to an Agilent
5975C inert XL EI/CI MSD with triple-axis detector mass spectrometer. Sample organization and injection
was performed by an Agilent 7693 Autosampler.

For the analysis of amino acids and central carbon metabolites, aqueous solutions previously dried
using nitrogen were resuspended in ACN and derivatized using MTBSTFA. Equal volumes of MTBSTFA
and ACN (100 mL) were added to each sample in a glass GC vial, capped, vortexed briefly, and then incu-
bated on a hot plate at 50°C for 30 min. Derivatized samples were transferred to new GC vials containing
glass inserts for analysis. Separation of analytes was accomplished with a Phenomenex Zebron ZB-5MS
nonpolar column (30 m by 0.25 mm inner diameter, 0.25 mm) The GC temperature gradient for the
MTBSTFA-derivatized samples was 60°C for 2 min, ramping to 120°C at a rate of 20°C/min (3 min ramp
time) and then to 155°C at a rate of 6°C/min (5.83 min ramp time), and finally ramping to a temperature of
300°C at a rate of 14.5°C/min (10 min ramp time), where the temperature was held for 10 min. The total run
time was 30.833 min. Helium gas was used as the carrier at a flow rate of 1.5 mL/min. Injections were per-
formed at a volume of 1mL, with a split ratio of 10:1, and an inlet temperature of 325°C. The interface tempera-
ture between the GC and MS was set at 230°C. The volatile central carbon metabolites, formate and acetate,
were analyzed underivatized in aqueous solution. Analysis was performed using a Phenomenex Zebron ZB-
WAX column (30 m by 0.25 mm inner diameter, 0.50mm). The oven temperature started at 75°C and was held
for 1 min. It was then ramped at a rate of 6°C/min to 180°C (17.5 min ramp time) and then ramped at 10°C/
min to 230°C (5 min ramp time), where it was held for 5 min. The total run time was 28.5 min. Helium gas was
used as a carrier at a flow rate of 3 mL/min. Injections were performed at a volume of 0.5mL, splitless, with the
inlet temperature set at 240°C and the interface temperature set at 280°C.

Glucose was determined using an enzymatic kit (GAGO-20, KA-1652, and AA0100; Sigma, St. Louis, MO).
Data availability. The raw data derived from these analyses have been deposited in the Gene Expression

Omnibus database with accession number GSE186080.
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