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Background: Prehospital severity
scores can be used in routine prehospital
care, mass casualty care, and military tri-
age. If computers could reliably calculate
clinical scores, new clinical and research
methodologies would be possible. One
obstacle is that vital signs measured auto-
matically can be unreliable. We hypothe-
sized that Signal Quality Indices (SQI’s),
computer algorithms that differentiate be-
tween reliable and unreliable monitored
physiologic data, could improve the
predictive power of computer-calculated
scores.

Methods: In a retrospective analysis
of trauma casualties transported by air

ambulance, we computed the Triage Re-
vised Trauma Score (RTS) from archived
travel monitor data. We compared the
areas-under-the-curve (AUC’s) of receiver
operating characteristic curves for predic-
tion of mortality and red blood cell trans-
fusion for 187 subjects with comparable
quantities of good-quality and poor-
quality data.

Results: Vital signs deemed reliable
by SQI’s led to significantly more discrim-
inatory severity scores than vital signs
deemed unreliable. We also compared
automatically-computed RTS (using the
SQI’s) versus RTS computed from vital
signs documented by medics. For the sub-

jects in whom the SQI algorithms identi-
fied 15 consecutive seconds of reliable
vital signs data (n � 350), the automatically-
computed scores’ AUC’s were the same as
the medic-based scores’ AUC’s. Using the
Prehospital Index in place of RTS led to
very similar results, corroborating our
findings.

Conclusions: SQI algorithms improve
automatically-computed severity scores, and
automatically-computed scores using SQI’s
are equivalent to medic-based scores.

Key Words: Remote triage, Moni-
toring, Trauma score, Vital signs, Signal
quality.
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Background
Prehospital severity scores for trauma casualties arose

from a need to decide if a patient should be transported to a
trauma center or if care at a community hospital would likely
suffice. The best-known include Champion’s Revised
Trauma Score (RTS)1 and the Prehospital Index (PHI)2; these
scores are generated from formulas into which are entered a
set of physiologic measurements. Although their discrimina-
tory power is moderate,3–5 prehospital severity scores can in
principle be useful tools for civilian triage methodologies, for
military triage6 and for triage after a mass casualty incident.7

Of course, severity scores can be no more accurate than the
physiologic measurements input into the formulas. Unfortu-

nately, even in routine clinical practice, vital signs measure-
ments can be unreliable,8,9 and continuous monitoring is
known to yield unreliable data because of motion artifact and
other sources of error.10–14 In uncontrolled environments,
data quality is likely to be modest, and inaccurate measure-
ments are likely to reduce the predictive power of severity
scores.

Goals of this Investigation
Recent reports described a set of signal quality indices

(“SQI’s”),15,16 which are computer algorithms that rate the
reliability of vital signs measurements made by a Propaq
(Welch Allyn, Beaverton, OR) transport monitor (blood pres-
sure, respiratory rate [RR], heart rate [HR], and oxygen
saturation17). We tested if SQI’s would improve the predic-
tive power of automatically-computed severity scores calcu-
lated directly from Propaq data by eliminating unreliable vital
signs. We also compared the predictive capabilities of scores
computed automatically versus scores based on the vital signs
documented by air ambulance caregivers (“medic-based
scores”). Severity scores were evaluated as predictors of
mortality and need for blood transfusion, for a population of
trauma casualties transported by civilian air ambulance.

Importance
An automated methodology for computing severity

scores, tolerant of the vagaries of physiologic monitoring in
uncontrolled environments, offers near-term and long-term
value. Near-term, this automated method could be imple-
mented in existing transport monitors and relieve a caregiver
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of the computational task, or offer a double check when less
experienced caregivers are making triage decisions. Longer-
term, if it can be established that computers are able to
accurately compute severity scores that are mathematically
simple (e.g., RTS and PHI), the same principles may enable
even more powerful automated diagnostic algorithms, for
monitoring very large patient populations. Diverse efforts are
already underway to develop new sensors and wireless net-
works for remote physiologic monitoring of disaster casual-
ties, soldiers in combat, patients in overcrowded emergency
departments, and convalescent patients at home.18–24 Auto-
matic computation of prehospital severity scores may be a
first step in the development of new computer-supported
triage and decision-support capabilities.

METHODS AND MATERIALS
We held two primary hypotheses:

1. New SQI computer algorithms, designed to identify reg-
ular, consistent, and “clean” physiologic measurements,
can distinguish reliable from unreliable Propaq monitor
data (see Fig. 1). Reliable Propaq data identified by the
SQI would be more predictive for severity scoring than
data deemed unreliable.

2. Expert caregivers would only chart physiologic data that
they thought to be credible. After the SQI excluded unre-
liable Propaq data, SQI-based automatic scores would be
as predictive as medic-based scores.

Setting
Our study is based on a retrospective analysis of civilian

trauma patient data deposited in the Physiology Analysis
System, which provides relational database and analysis tools
to users over the Internet.25 The original data were imported
from the Trauma Vitals Database, which contains clinical
data and continuous physiologic data from trauma patients
transported from the scene of injury by helicopter service to
the Level I unit at the Memorial Hermann Hospital in Hous-
ton, TX. Additional details about the trauma population and
the Emergency Medical Service are available in.26

Data Collection
Clinical data about the patient’s hospital course, outcome

(e.g., mortality), specific injuries, and specific therapy (e.g.,
red blood cell transfusion) were obtained by retrospective
chart review.26 The physiologic data were measured by a
Propaq 206 monitor and its standard devices, during routine
prehospital care of each casualty, and were downloaded to an
attached personal digital assistant. The collected data include
electrocardiogram (ECG) and photoplethysmogram (PPG)
waveform signals and corresponding HRs and the RR, all
calculated by Propaq’s algorithms, and also the noninvasive
blood pressure measurements (NIBP), including systolic
blood pressure (SBP), mean arterial pressure, diastolic blood
pressure, and associated NIBP HRs. The data collection was
conducted with institutional review board approval, with a
waiver of informed consent.

Automatic Signal Quality Index Algorithms
The technical details of the automatic SQI algorithms for

RR and HR have been reported.15,16 Below, we summarize
these methods, and describe a new SQI algorithm for SBP
(Table 1). The SQI’s rate the reliability of vital sign data with
whole numbers running from least (“0”) to most (“3”) reli-
able. In this investigation, we considered vital signs rated �2
by the SQI as reliable.

Fig. 1. Examples of reliable and unreliable vital signs identified by
signal quality indices (SQI’s). (A) In this 60-second interval, the
respiratory rate (RR) reported by the Propaq monitor was as high as
40 breaths per minute, but the SQI determined that the RR was
unreliable because the underlying respiratory waveform was non-
physiologic. (B) In this 60-second interval, the RR reported by the
Propaq monitor was 26 breaths per minute. The SQI determined that
this RR was reliable because the underlying respiratory waveform
was reliable. (C) In this 10-second interval, the Propaq heart rate
(HR) was reported as high as 120 beats per minute. The SQI
determined that this HR was unreliable because it did not match the
SQI’s independently calculated HR, 79 beats per minute (actual
QRS complexes are indicated by an asterix, and the actual HR was
79 beats per minute).

Table 1 Blood Pressure Signal Quality Index

IF SBP or DBP or NIBP HR changes THEN
IF ECG HR and NIBP HR are within 10 beats

AND PP � 10 mm Hg
AND abs(MAP—estimated MAP) �10% MAP
THEN SQI � 3 (Outstanding)

ELSE IF 40 � MAP � 160
AND abs(MAP–estimated MAP) �10% MAP
THEN SQI � 2 (Usable)

ELSE IF 40 � MAP � 160
THEN SQI � 1 (Questionable)

ELSE
SQI � 0 (Unreliable)

DBP, diastolic blood pressure; PP, pulse pressure (SBP—DBP);
NIBP HR, heart rate measured by Propaq BP cuff; ECG HR, heart rate
measured by Propaq electrocardiography; MAP, mean arterial pres-
sure measured by Propaq cuff; Estimated MAP � DBP � (PP/3).
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Respiratory Rate Signal Quality Index
The algorithm identifies the typical height, width, and

area of each potential breath and only counts those that are
similar to other breaths in the same 15-second window.16 The
RR is deemed reliable when the following conditions are met:
(a) the Propaq’s computed RR is roughly equal to our com-
puted RR, and (b) our computed RR is not very sensitive to
small changes in the pneumograph baseline (in other words,
each breath is prominent). The RR SQI produces a value
between 0 and 3, from least to most reliable.

Heart Rate Signal Quality Index
The HR SQI algorithm computes how prominently the candi-

date R-waves stand out from the rest of the ECG tracing, how
regularly the candidate R-waves occur, and the amount of high-
frequency oscillation in the ECG signal.15 A machine-learning clas-
sifier is used to rate the ECG waveform as reliable or not based on
those measures. The algorithm also checks that the Propaq HR
matches the algorithm’s own HR. The HR SQI performs similar
analysis of the PPG, and considers if the ECG HR is equal to the
PPG HR. On the basis of all this information, the HR SQI produces
a value between 0 and 3, from least to most reliable.

Systolic Blood Pressure Signal Quality Index
The Propaq monitor uses the principle of oscillometry to mea-

sure noninvasive systolic, diastolic, and mean arterial blood pres-
sure, and also reports a HR.17,27 The magnitude of the volumetric
oscillations, as a function of the external cuff pressure, is used by the
Propaq to establish the patient’s blood pressures, and the frequency
of oscillations leads to the NIBP HR. Like all oscillometric devices,
it is subject to motion artifacts, because arterial pulsations cannot be
readily distinguished from other motions. Our blood pressure SQI
consists of several heuristic rules based on the following: is the
oscillometric HR close to the ECG HR? Is the reported mean
arterial pressure about 1/3 of the value between the diastolic and
systolic values? And is the pulse pressure (the difference of SBP
and diastolic blood pressure) physiologic? See Table 1.

Data Processing
We considered data in the first 15 minutes of each Propaq

electronic record. We processed data for two subject populations.

Reliable Versus Unreliable Data
We identified those subjects with at least 15 consecutive

seconds of reliable SBP and RR data; and 15 consecutive sec-
onds of less reliable SBP and RR data. Reliability was deter-
mined automatically by the SQI algorithms described above.
RTS was automatically-computed from (a) the mean of all
reliable RR and SBP data in the initial 15 minutes of a subject’s
Propaq electronic record; versus (b) the mean of less reliable RR
and SBP data in the initial 15 minutes. Data were extracted using
the ad hoc filtering capabilities of the Physiology Analysis
System,25 and the computations were performed using routines
we developed in the MatLab v7.1 computing environment
(MathWorks; Natick, MA).

Signal Quality Index-Based Scores Versus
Medic-Based Scores

We compared the predictive capabilities of scores com-
puted automatically versus scores based on the vital signs
documented by air ambulance caregivers (“medic-based
scores”), for records with a minimum of 15 consecutive
seconds of reliable RR and SBP data (per the SQI). RTS was
computed from (i) the mean of the first 15 seconds of reliable
RR and SBP data in each Propaq electronic record, versus (ii)
the RR and SBP data charted by the medics.

Using SBP and RR values, RTS was computed as per
Champion.1 For “medic-based” RTS scores, the initial docu-
mented scene SBP was not present in our database for a majority
of cases, whereas the lowest medic documented field SBP was
available for all cases in the study population. Therefore, the
latter parameter was substituted for the former. This modifica-
tion to Champion’s method is considered in the discussion.

For all score calculations, the medic-charted Glasgow Coma
Scale (GCS) was used because there is no accepted, automated
alternative. Note that we used Champion’s Triage RTS instead of
RTS (both were originally described in1), because the latter weighs
GCS more heavily than its SBP and RR components.

Outcome Measures
Superior trauma severity scores should be more discrim-

inatory of mortality and resource utilization. Two specific
outcomes were investigated, to check that any differences
between medic-based scores and automatically-computed
scores were not idiosyncratic of specific outcomes. We fo-
cused on (a) prediction of mortality because, in the aftermath
of a disaster or during an active military operation, it is
important to identify those casualties whose prognosis is so
poor that there is no justification for risking resources on
them; and (b) prediction of blood transfusion, because hem-
orrhage is both an extremely common cause of traumatic
death but often treatable, and receipt of blood transfusion is a
reasonable surrogate for a major hemorrhagic abnormality.

Statistical Analysis
For the severity scores, receiver operating characteristic

(ROC) curves were constructed for both outcomes of interest
(death and blood transfusion). The area under the ROC curve
(AUC) was used as our performance metric. We used the
ROCKIT freeware (University of Chicago),28 which per-
forms statistical tests-of-significance between investigational
ROC curves, using a maximum likelihood estimation to fit a
binormal ROC curve to data.29–31 Significance of the differ-
ence between two binormal ROC curves was tested by paired
comparison of the AUC’s.

Sensitivity Analysis
We repeated the preceding calculations using the PHI.

The motivation for this sensitivity analysis was to check that
any patterns between medic-based scores and the automatically-
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computed scores were independent of specific severity scores.
The RTS and PHI remain among the best-known prehospital
severity scores,7,32 perhaps because alternatives are not con-
vincingly superior.33,34

We computed the PHI based on the original method of
Koehler,2 which yields a severity score from a formula based on
the HR, SBP, “level of consciousness,” “respiratory status,” and
whether or not there is penetrating thoraco-abdominal trauma. To
ascertain if each casualty had penetrating thoraco-abdominal
trauma, we employed an automated text search of the abbre-
viated injury scale fields in our database. With the above
parameters, it was possible to compute PHI using the scoring
system summarized in Table 2.

Note that PHI requires HR data, in addition to SBP and
RR data. RTS only requires SBP and RR data. PHI study
groups are smaller than their respective RTS groups, because
the exclusion criteria are applied to subjects’ HR data as well
as their SBP and RR data.

RESULTS
There were a total of 660 case records in the database.

The size of the study groups, their demographics, and
outcomes are tabulated in Table 3. All groups had similar
distributions.

Validation of Signal Quality Indices
In subjects with 15 seconds or more of both reliable

(high SQI) and unreliable (worse SQI) vital sign data, the
reliable vital signs produced an RTS score significantly more
predictive of blood transfusion than unreliable vital signs
(p � 0.0003). Reliable data also yielded consistent trends
toward improved prediction of mortality using RTS, and
blood transfusion and mortality using PHI (�0.04, �0.09,
and �0.11 for ROC AUC’s, respectively), though these were

Table 2 Five Scoring Elements of the Modified
Prehospital Index

Parameter Range Score

Systolic blood pressure �100 0
86–100 1
75–85 2

�75 5
Heart rate 51–120 0

�120 3
�50 5

Respiratory rate “Normal” (10 � RR � 29) 0
“Labored/shallow” (RR � 29) 3
“Below 10 needs intubation”

(RR � 10)
5

Level of consciousness “Normal” (GCS � 15) 0
“Confused combative” (6 �

GCS � 14)
3

“No intelligible words” (3 �

GCS � 5)
5

Penetrating abdominal or
chest injuries
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not statistically significant. These results are tabulated in
Table 4, and the ROC curves are shown in Figure 2.

Signal Quality Index-Based Scores Versus Medic-
Based Scores

In 350 subjects, the SQI algorithms identified at least 15
consecutive seconds of reliable Propaq SBP and RR data.

ROC AUC’s for automatically-computed severity scores us-
ing the initial 15 seconds of reliable vital sign data were
comparable to medic-based scores’ ROC AUC’s (Table 5).
These ROC curves are illustrated in Figure 2. There were no
significant differences between SQI-based scores and medic-
based RTS scores. Similarly, there were no differences when
the computations were repeated for the PHI (Table 5).

Fig. 2. Predicting packed red blood cell transfusion (PRBC’s, left column) and mortality (right column) with Triage Revised Trauma Score
using different vital signs inputs. Top row: Reliable versus unreliable data. SQI’s were used to automatically select subjects with both reliable
and unreliable Propaq data (187 total, 40 received RBC, 15 died). For each subject, RTS was automatically computed from the reliable and
from the unreliable data. The AUC’s are given in Table 4. Bottom row: Automatically-computed versus medic-based RTS. Subjects had at
least 15 seconds of continuous, reliable Propaq data (350 total, 67 received RBC, 29 died). The two sources of vital signs are the reliable
Propaq data (determined by the SQI), and the medic charted vital signs. Corresponding AUC’s are reported in Table 5.

Table 4 Reliable Propaq Data Versus Unreliable Propaq Data: Differences in ROC AUC for Prediction of
Mortality and PRBC Transfusion With Automatically-Computed Severity Scores

RTS (n � 187) PHI (n � 103) �Sensitivity Analysis�

PRBC Transfusion Mortality PRBC Transfusion Mortality

ROC AUC using unreliable Propaq data (per SQI) 0.58 0.84 0.63 0.76
�ROC AUC using reliable Propaq data (per SQI) �0.15 (p � 0.0003) �0.04 (NS) �0.09 (NS) �0.11 (NS)

Statistical comparisons between automatically-computed severity scores using two sources of vital signs data, for subjects with compa-
rable quantities of reliable and unreliable data (e.g., subjects with at least 15 consecutive seconds of reliable vital signs data; and 15 consecutive
seconds of less reliable vital signs data).

Propaq data were automatically classified as “reliable” or “unreliable” by SQI’s.
PRBC, packed red blood cells; NS, not significant.
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DISCUSSION
Automated Differentiation of Reliable Versus
Unreliable Vital Signs

These findings support the hypothesis that automatically-
computed severity scores are improved by SQI algorithms,
which can identify and exclude unreliable physiologic data.
Reliable vital signs identified by the SQI’s lead to signifi-
cantly better RTS prediction of blood transfusion (p �
0.0003). Reliable data also yield consistent trends toward
improved prediction of mortality using RTS, and of blood
transfusion and mortality using PHI (�0.04, �0.09, and
�0.11 for ROC AUC’s, respectively). The lack of statistical
significance in these comparisons is likely a result of the
small sample sizes (only fifteen died), and all the results are
consistent with the highly significant finding. The statistically
significant difference is all the more striking for two reasons.
First, we used the same (medic’s) GCS for all automatically-
computed scores, which had the effect of making severity
scores based on reliable versus unreliable data more similar.
Second, we used the mean of all unreliable vital signs, which
to some degree “averages out” random errors in individual
measurements. Overall, these results are consistent with prior
reports evaluating the effectiveness of SQI algorithms, where
97% of HR values deemed reliable by the SQI algorithm
matched the HR measured by blinded human review,15 and
the RR SQI algorithm was similarly shown to identify reli-
able RR values.16

Potential Clinical Effectiveness
Whenever prehospital severity scores are deemed useful,

automated computation could be applied. Using only 15 con-
secutive seconds of reliable data, SQI-based scores are equiv-
alent to medic-based scores, from data documented by
experienced prehospital medics. Near-term, this automated
methodology could be implemented into any transport mon-
itor to produce severity scores. This could relieve a caregiver
of the computational task, or offer a double check when less
experienced caregivers (e.g., basic life support) are making
difficult triage decisions (e.g., nonurban settings with signif-
icant transport times). Given an automated functionality, it
would be more practical for emergency medical systems to
routinely incorporate physiologic scores in their triage meth-
odologies (presumably in conjunction with other criteria,

given the limitations of triage by RTS or PHI alone3–5).
Longer-term, since we have demonstrated that computers can
accurately compute severity scores that are mathematically
simple (e.g., RTS and PHI), we speculate that computers
could automatically apply even more diagnostically powerful
and complicated algorithms to interpret biosignals and their
patterns of change over time.35–38

Our “automatically-computed” method would be even
more efficient if it did not require full GCS scoring by the
caregiver. Full GCS scoring yields 13 ordinal levels (3
through 15), whereas the triage RTS score only requires 5
distinct mental status levels (1 through 5 points), and the PHI
only 3 (0, 3, or 5 points). Prior work on the GCS suggests that
the individual motor component of the GCS may be as good
as, or better than, the full GCS.39 The APVU (Alert/Pain/
Verbal/Unresponsive) system also involves merely four men-
tal status categories. This all suggests that triage may be
performed using a simpler method with fewer distinct mental
status levels. In an exploratory analysis, we computed sever-
ity scores using individual components of the GCS score
rather than the complete three-component GCS score. The
ROC AUC’s were very similar (�ROC AUC’s 	0.01 � 0.01,
for predictions of mortality and transfusion with modified
RTS computed from individual GCS components). The
optimal implementation of automatically-computed sever-
ity scores might only require that caregivers input a simple
four- or five-point mental status assessment, such as the
GCS motor score, or the APVU score. Our results, in
keeping with prior research, suggest that such a modifica-
tion will not reduce the discriminatory power of prehos-
pital triage scoring. In the even longer-term, a wholly
automated methodology for mental status assessment
would of course be desirable.

Availability of Reliable Data
In 310 of 660 subjects, the SQI algorithms could not

identify 15 consecutive seconds of high-quality SBP and RR
data. In practice, this could limit automatically-computed
severity scores, so this requires further discussion. First, note
that the algorithm determines data reliability autonomously,
and it could certainly provide an indication when sufficient
reliable data have been collected and, conversely, when an
automatically-computed severity score is based on unreliable

Table 5 Automatically-Computed Versus Medic-Based Severity Scores: Differences in ROC AUC for Prediction of
Mortality and PRBC Transfusion Using Different Sources of Vital Signs Data

RTS (n � 350) PHI (n � 348) (Sensitivity Analysis)

PRBC Transfusion Mortality PRBC Transfusion Mortality

ROC AUC for medic-based severity scores 0.70 0.86 0.74 0.85
�ROC AUC when automatically computed

with reliable Propaq data
	0.03 (NS) 	0.00 (NS) 	0.02 (NS) �0.03 (NS)

Statistical comparisons between severity scores computed from medic-charted vital signs data versus scores automatically-computed
from reliable Propaq data (with at least 15 consecutive seconds of reliable vital signs data, automatically determined by SQI algorithms).

PRBC, packed red blood cells; NS, not significant.
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data. If notified that the data are unreliable, the caregiver may
be able to rectify the situation, e.g., replacing loose ECG
leads, holding the patient still for a 15-second interval, etc. In
the meantime, severity scores based on unreliable data pro-
vide some information, though not as much as scores based
on reliable data (Table 4). Future SQI algorithm enhance-
ments, so that the SQI algorithms are more sensitive to
reliable vital signs, may offer a modest benefit in broadening
the clinical usefulness of automatically-computed severity
scores. In prior reports, when the HR SQI algorithm identi-
fied unreliable data, blinded human experts concurred most
of the time (e.g., 83% sensitivity for reliable data).15 The
algorithm was quite specific (97%) for data reliability.

It is possible that, for the most severely injured, it might
be difficult to obtain reliable Propaq data. But when we
examined the relationship between misclassification rate
(false positives plus false negatives) versus a metric of se-
verity (Injury Severity Score [ISS]) using an RTS cuff-off �9
as a predictor for mortality and blood transfusion, we found
that the least injured casualties and the most severe casualties
were less likely to be misclassified, because their vital signs
tended to be normal or abnormal, respectively. The middle
range casualties were more likely to have borderline physio-
logic profiles, which are most difficult to classify. For exam-
ple, in the middle range of injury severity (ISS, 26–50),
misclassification rates were 30% (mortality) and 50% (blood
transfusion) higher than the misclassification rate for the most
severe casualties (ISS, 51–75).

Remote Monitoring and Triage
One motivation for this study was to assess the feasibility

of automated clinical scoring for remote triage and other
remote monitoring applications. Retrospective analysis of the
Propaq data is similar to the remote monitoring problem: only
the raw electronic data are considered, not other cues and
information available to a caregiver at the patient’s side. The
United States Department of Defense has an active program
to develop specialized light-weight physiologic sensors and
wireless networks for remote monitoring of military
combatants.20 In military operations, the remote determina-
tion of which combat casualties have only mild injuries or, at
the other extreme, which are unsavable, would be very useful,
to prioritize casualty care, and because approaching casual-
ties to assess their state during ongoing combat endangers
medics. There are also civilian efforts to develop analogous
devices for remote monitoring of disaster casualties and even
patients convalescing at home.18–24 Remote triage biosensors
and algorithms would be useful in responding to civilian mass
casualty incidents, when there are too few personnel available
to evaluate and reevaluate a large number of casualties. Men-
tal status might be assessed remotely by motion sensors (for
approximate GCS motor scoring), two-way radio (for ap-
proximate GCS verbal scoring), or wholly novel signal
processing or sensor solutions. For civilian mass casualty

responses, mental status could be assessed with a brief,
caregiver interaction.

A major challenge to remote physiologic monitoring will
be data quality. Our results suggest that SQI algorithms can
distinguish reliable from unreliable physiologic data that the
use of SQI algorithms can improve automatically-computed
severity scores, and that automatically-computed severity
scores are equivalent to medic-based scores for the majority
of subjects in whom SQI algorithms identified 15 consecutive
seconds of reliable vital sign data. Yet standard monitoring
devices (e.g., ECG leads, pulse oximetry probe, NIBP cuff)
are vulnerable to patient motion artifact and to improper
placement.8–14 A rushed air ambulance ride is unlikely to be
conducive to pristine measurements. Therefore, the incidence
of unreliable vital sign data is not surprising. Even in con-
trolled in-hospital settings, false alarms due to erroneous
physiologic measurements are an ubiquitous nuisance.10

Remote triage will require novel monitoring hardware ca-
pable of reliable measurements in very challenging envi-
ronments, because it seems likely that data quality would
suffer further during remote operation unsupervised by
caregivers.

Limitations
We made minor modifications in how RTS and PHI were

calculated for the “medic-based” scores. For instance, we
used the “lowest-documented SBP” instead of the initial
scene SBP, because the former was available for all case
records. This may alter the ROC AUC’s of the “medic-based
scores.” However, we doubt these modifications altered our
results, for three reasons. First, we investigated variations in
how to compute RTS from a time-series of Propaq RR and
SBP data, and the results were essentially unchanged. Spe-
cifically, we recomputed the RTS using the highest measured
Propaq RR and SBP, and we recomputed the RTS using the
lowest measured Propaq RR and SBP. We also recomputed
RTS using data from the first half of each subjects’ record,
and from the second half. These exploratory permutations in
how to compute RTS did not change our ROC AUC’s by any
appreciable amount (RTS permutations’ �ROC AUC’s aver-
aged 0.00 � 0.01, for predictions of mortality and blood
transfusion). This suggests that the method of selecting vital
signs from a prehospital time series does not notably affect
the ROC AUC of RTS. This temporal insensitivity, of early
versus later triage scores in the majority of trauma casualties,
has been previously described.35,36

Second, our results showed consistent trends between
RTS and PHI (and between prediction of mortality and pre-
diction of blood transfusion). This consistency between dif-
ferent severity scores provides some assurance that the results
are valid. Last, the ROC curves for the medic-based severity
scores are comparable to prior reports3–5 (note that our RTS
and PHI predict mortality better than blood transfusion; this
is not surprising since GCS is more likely to predict massive
head injury than hemorrhage).
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CONCLUSION
Using only 15 consecutive seconds of reliable Propaq

data (as identified automatically by computer algorithms),
automatically-computed severity scores are equivalent to
medic-based scores, in terms of predicting mortality and
red blood cell transfusion. This suggests that near-term, an
automated methodology could be implemented into a
transport monitor to produce severity scores based on
physiologic data. The methodology might be further sim-
plified, without loss of discriminatory power, using an
abbreviated assessment of mental status. Longer-term,
since we have demonstrated that computers can distinguish
reliable versus unreliable data and accurately compute
severity scores that are mathematically simple (e.g. RTS
and PHI), we speculate that computers could automatically
apply even more diagnostically powerful and complicated
algorithms to interpret biosignals and their patterns of
change over time. A major issue will be data quality, as
many records did not contain the requisite 15 consecutive
seconds of reliable Propaq data. Near-term, the computer
could notify caregivers when the data are unreliable, so
that the caregiver may rectify the situation. Longer-term,
better biosensors that output more reliable measurements
may enable automated analysis of physiologic data for
large numbers of unsupervised subjects.
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