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ABSTRACT 

The military has long been interested in advanced decision-support capabilities for combat casualty care in 

which an automated computer algorithm processes available data and, through artificial intelligence, offers 

caregivers accurate information about the state of the casualty.  However, two major obstacles have impeded 

these capabilities.  First, routine vital signs have been speculated to be insensitive to prehospital major 

traumatic pathology.  Second, there are numerous potential sources of decision-support failure, and it is not 

possible to investigate and address such potential limitations and demonstrate utility within the confines of a 

research laboratory.  To address these obstacles, we retrospectively mined our trauma database consisting of 

vital signs and attribute data from 898 patients, and employed various signal-processing, artificial 

intelligence, and knowledge engineering technologies to develop an automated decision-support system.  Our 

system for major hemorrhage diagnosis yielded an area under the receiver operating characteristic curve of 

0.85 (95% confidence interval 0.80-0.90), with an 85% sensitivity and a 73% specificity, when retrospectively 

applied to the testing set of basic vital-sign data.  In parallel, we developed a novel plug-and-play 

software/hardware system (termed APPRAISE) for automated, real-time data collection and prospective 

testing of decision-support algorithms in prehospital, clinical settings.  Through simulations, we verified 

APPRAISE’s real-time capability.  Here, we summarize our technologies and findings in the development of 

an advanced medical system to reach the long-awaited goal of field deployment of automated decision-

support tools for the triage and diagnosis of trauma casualties. 

1.0 INTRODUCTION 

Casualty care on the battlefield is challenging.  In addition to major environmental distractions and dangers, 

caregivers may face suboptimal resources and incomplete diagnostic information.  Proper assessment of the 

state of the casualty and determination of the emergent need (or not) for life-saving interventions can be 

problematic.  The problem is exacerbated in mass casualty situations, where many casualties are tended by 

only a few caregivers who have received limited training on casualty care, while timely and proper diagnosis 

and treatment of casualties are critical for their ultimate survival.  To overcome these challenges and optimize 

casualty outcome, it would be useful to develop and employ automated decision-support tools that could 

intelligently analyze early vital-sign data on the battlefield and autonomously generate reliable medical 

decisions.  We have already witnessed decreases in morbidity and mortality in war wounds from the 19
th
 

century to the modern wars due to the adoption of better evacuation and treatment strategies, medical 

equipment, and care training systems [1]; however, about 15% of combat deaths in the recent Iraq war are still 

reported as being potentially survivable [2, 3].  The challenge for researchers is to develop decision-support 
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tools that address the constraints of battlefield environments and assess their benefits.   

The United States military has long been interested in developing advanced decision-support capabilities, 

which, based on physiological information collected by biosensors and an automated computer algorithm, can 

autonomously determine the injury state of casualties and formulate a prognosis and/or diagnosis.  Such 

capabilities are especially important when triaging and monitoring multiple casualties during transport from 

the field to higher echelons of care.  However, two major obstacles have impeded such capabilities.  First, 

routine vital signs are notoriously unreliable in the prehospital environment, which is largely due to various 

confounding factors, such as motion artifacts, power supply interference, and changing psychological status of 

the soldiers, and the diagnostic value of prehospital vital signs for major traumatic pathologies has often been 

questioned [4-8].  Indeed, our automated post hoc analysis of vital-sign data of 898 trauma patients, collected 

during helicopter transport to a Level I trauma center, indicates that only 44% of heart rate (HR) records and 

27% of respiratory rate (RR) records are of sufficient quality to be used for automated decision support [9, 

10], and unreliable vital signs are significantly less informative for the diagnosis of major trauma pathologies 

than reliable vital signs [11, 12].  Second, there are numerous potential sources of decision-support failure, 

which can be due to the unique and unforeseeable battlefield conditions, confounding factors from medical 

interventions, and the high sensitivity of the algorithms to data outliers.  Clearly, it is not possible to 

investigate and address such limitations and demonstrate utility within the confines of a research laboratory.   

Over the past several years, our program has established a set of automated decision-support technologies for 

the prehospital care of trauma patients.  These technologies were developed in a systematic fashion through 

retrospective mining of a civilian trauma database, and addressed several key issues relating to signal 

processing, artificial intelligence, and knowledge engineering.  Specifically, our technologies are comprised 

of: 1) signal-processing technologies that automatically determine the reliability of vital-sign data and extract 

vital-sign features; 2) artificial intelligence classifiers that discriminate clinical outcomes, i.e., case and 

control groups, while considering real-world data problems, such as missing vital signs, noisy data, and 

unbalanced case-control groups; 3) a plug-and-play software/hardware system for real-time field data 

collection and decision support; and 4) prospective field validation.  These technologies embody a fully 

automated decision-support system that can be taken into the field to monitor and diagnose trauma patients in 

real time.  The system relies only on conventional vital-sign data, such as HR, RR, arterial blood oxygen 

saturation (SpO2), and systolic and diastolic blood pressures (BPs; SBP and DBP, respectively), and displays 

the maximal tolerance to noise and incomplete measurements that are emblematic of field-collected data.  We 

have focused our system on the diagnosis of major hemorrhage, which is a major source of trauma mortality 

and is often treatable [13-15], and our system demonstrated good performance in hemorrhage diagnosis when 

retrospectively tested on the trauma database.  Such capability is also useful for automated diagnosis, triage, 

and vigilant monitoring of combat casualties during long-distance air transport or in military medical 

treatment facilities.  

In this paper, we review the above-mentioned technologies, focusing on their practical value in addressing 

two major obstacles: the unreliability and information content of field-collected vital signs and the ability to 

test decision-support tools in realistic environments.  Our studies revealed that basic vital signs can offer 

surprisingly rich information for the automated diagnosis and decision support of trauma casualties.  In 

addition, our preliminary assessment showed that our software/hardware system is capable of collecting and 

analyzing vital-sign data in real time.  To this end, we propose a unique solution in which novel algorithms 

can be plugged into our real-time system in minutes, and they can be rapidly deployed in the field for 

prospective validation.   
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2.0 RETROSPECTIVE MINING OF TRAUMA DATA  

2.1 Data Collection 

Our decision-support system was developed based on the retrospective analysis of physiological vital-sign 

time-series data collected from 898 trauma-injured patients during transport by medical helicopter from the 

scene of injury to the Level I unit of the Memorial Hermann Hospital in Houston, TX [16-19].  The vital signs 

were measured by Propaq 206EL monitors (Welch Allyn; Skaneateles Falls, NY) [20] during transport, 

downloaded to an attached personal digital assistant, and ultimately stored in our database [21].  The time-

series data consisted of high-frequency electrocardiogram (ECG), photoplethysmogram (PPG), and 

impedance pneumogram (IP) waveform signals recorded at 182, 91, and 23 Hz, respectively, and their 

corresponding monitor-calculated vital signs (HR, SpO2, and RR), recorded at 1-s intervals.  In addition, SBP, 

DBP, and mean arterial pressure (MAP) were collected intermittently at multi-minute intervals.  In addition, 

we collected 100 attribute data via retrospective chart review, which included demographics, injury 

descriptions, prehospital interventions, and hospital treatments [9, 10, 12, 15-19, 22, 23].   

2.2 Outcome Definition  

Our work focused primarily on the diagnosis of major hemorrhage induced by trauma, which is a significant 

source of mortality in the battle field and is often treatable [13-15].  We identified “case” and “control” 

outcomes for major hemorrhage using objective criteria.  Because there are no perfect, indisputable 

retrospective definitions of major hemorrhage, we also tested the system using alternative hemorrhage 

definitions to verify that our system performed well given any reasonable definition of major hemorrhage.  A 

good decision-support system should not be sensitive to the precise way in which the outcome of interest is 

defined; rather, it should yield similar performance for any reasonable definition of the clinical outcome.  To 

test the performance of the system under alternative outcome definitions, we performed sensitivity analysis.  

The following definitions have been investigated: 

• Primary definition of major hemorrhage (cases): Major hemorrhage was defined as the receipt of 

blood transfusion within 24 h upon arrival at the hospital, along with documented anatomic injuries 

that were explicitly hemorrhagic.  Such explicit injuries include one or more of the following: (1) 

laceration of solid organs, (2) thoracic or abdominal hematomas, (3) explicit vascular injury that 

required operative repair, or (4) limb amputation.   

• Alternative definitions of major hemorrhage: We explored alternative definitions of major 

hemorrhage as receiving blood transfusion or a fluid transfusion of >3 liters, and/or documented 

anatomic injury (see above).   

• Controls: In the primary outcome analysis, we excluded patients who received blood but did not meet 

the documented injury criteria, i.e., ambiguous hemorrhagic patients, and patients who died before 

arrival at the hospital (121 patients excluded); the remaining patients constituted the control group.  In 

the primary and alternative definitions of major hemorrhage, we also explored control patients 

with/without exclusion of ambiguous hemorrhagic patients. 

2.3 Demographics  

Among the total 898 trauma patients, 110 (12%) patients did not have any vital-sign data collected during 

transport, 105 (12%) of the remaining patients had ambiguous hemorrhagic condition, and 9 (1%) additional 
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patients did not have any reliable vital-sign data based on our data reliability algorithms (see Section 3.1, 

“Vital-Sign Data Reliability”).  The remaining 674 patients comprised our study population.  Table 1 shows 

the demographics of the overall database as well as the study population.  

Table 1: Demographics of the overall database and the study population 

Characteristics Overall database Study population 

Population size 898 674 

Male 660
*
 (73%) 501 (74%) 

Female 234
*
 (26%) 173 (26%) 

Mean age, yr 37 (SD
†
 16) 37 (SD 15) 

Blunt injury 778 (87%) 599 (89%) 

Mortality 94 (10%) 41 (6%) 

Prehospital intubated 201 (22%) 115 (17%) 

Major hemorrhage
‡
 94 (10%) 78 (12%) 

*
4 patients had no assigned gender in the overall database.  

†
Standard deviation. 

‡
Received blood transfusion in the hospital and also had documented 

injuries that were consistent with major hemorrhage. 

 

2.4 Statistical Methods  

The diagnostic performance of our decision-support system was evaluated by constructing receiver operating 

characteristic (ROC) curves, which provide a tradeoff relationship between sensitivity and specificity of the 

system’s decision outputs under a varying threshold, and by calculating the corresponding area under the 

curve (AUC) for each ROC curve, which provides a metric of the system’s overall performance.  An AUC of 

1.00 represents a perfect system and 0.50 represents a random one.  We used ROCKIT freeware (University 

of Chicago) [24] for these analyses, which automatically partitions the system’s decision outputs into at most 

20 intervals for the ROC-curve construction.  ROCKIT assumes a binormal ROC model, that is, data for each 

of the outcomes (i.e., major hemorrhage cases and controls) are considered to be normally distributed.  Under 

this assumption, each ROC curve is transformed into a straight line on the normal-deviate axes, whose 

ordinate intercept “a” and slope “b” are estimated by the maximum likelihood method [24].  The AUC is 

computed based on its mathematical relationship with a and b.  The ROC curves estimated from this method 

are smoother than empirically evaluated ROC curves and can better represent the relationship between the 

outputs of the decision-support system and the clinical outcomes.   

3.0 SINGAL-PROCESSING TECHNOLOGIES 

Physiological time-series data collected in the field are noisy, and the diagnostic value of prehospital vital 

signs has been questioned [4, 5].  Even in-hospital vital signs are prone to erroneous measurement [6, 25].  

The determination of vital-sign data reliability is a primary challenge in developing automated decision-

support systems and, therefore, we employed various signal-processing technologies to rigorously and 

systematically analyze prehospital vital-sign data, and created a complete set of data-processing algorithms to 

evaluate the reliability of each vital-sign time series and extract useful information, or features, from the vital 

signs.   
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3.1 Vital-Sign Data Reliability  

We have developed a set of algorithms to automatically evaluate the reliability of vital-sign time-series data 

collected in the field, utilizing redundant information present in high-frequency waveforms (ECG, PPG, and 

IP), based on which we algorithmically derived HR and RR, and the corresponding monitor-calculated vital 

signs (HR, SpO2, and RR), and the physiological relationships between SBP, DBP, and MAP [9, 10, 12].  Our 

decision-support system then used these data-reliability algorithms to automatically identify and then exclude 

unreliable vital-sign data.  We have shown that reliable data are superior to and significantly more predictive 

of clinical outcomes than unreliable data (as determined by our automated algorithms) [12, 16].  Regarding 

the importance of data reliability, we have found the following: 

• Our data-reliability algorithms rated each vital-sign datum on an integer-scale quality index (QI) 

ranging from “0” to “3,” reflecting vital-sign reliability from the least to the most reliable [9, 10, 12].  

We compared the algorithm-based rating of the vital-sign reliability, accepting QI≥2 as reliable, with 

human expert ratings and found that they concurred 90% of the time.  However, in our database, we 

found that only 27% of RR, 44% of HR, 40% of SpO2, and 87% of BP records were reliable based on 

our algorithms. 

• Our RR-reliability algorithm evaluated IP waveform (the source of the monitor-computed RR) and 

identified rhythmic and clean segments.  We found that RR that was computed exclusively from these 

clean, rhythmic waveform segments is statistically superior to standard measures of RR as a predictor 

of hospital intubation and major hemorrhage [9, 16].  Indeed, computed in this fashion, elevated RR is 

as diagnostic of major hemorrhage as hypotension (ROC AUC of 0.77 for RR, of 0.71 for SBP, and 

of 0.60 for MAP) [16].  However, ~50% of the patients in our database did not have “reliable” RR. 

• Another algorithm evaluated the reliability of the PPG waveform, a key component of pulse oximetry.  

In our database, we found that standard prehospital hypoxia (SpO2 ≤91%) has a positive predictive 

value (PPV) of ≤75% as a predictor of thoracic or intracerebral injury.  Prehospital hypoxia 

concurrent with a clean PPG waveform has a significantly higher PPV (≥95%) for the same outcomes 

[17].  However, this measurement has low sensitivity because the majority (~70%) of the PPG-

waveform data in our database were found to be unreliable. 

• Our HR reliability algorithm evaluated the ECG waveform and considered if there is agreement 

between several different methods of computing HR.  The algorithm was previously compared versus 

blinded human experts for several hundred ECG waveform excerpts [10].  When the HR algorithm 

identified reliable data, in 97% of the cases, blinded human experts concurred that the waveform was 

clean and, in 100% of those cases, concurred with the monitor’s reported HR.  When the algorithm 

identified unreliable data, humans agreed 85% of the time, suggesting that the algorithm was more 

selective than the human experts [10]. 

• The BP-reliability algorithm compared the HR measured by an oscillometric noninvasive BP cuff 

against the ECG HR and also checked that the relationships among SBP, MAP, and DBP were 

physiological [12].  Reliable SBP, as determined by this algorithm, was found to be statistically 

superior to unreliable SBP as a predictor of major hemorrhage [17]. 

3.2 Feature Extraction  

“Feature” refers to some function of the continual physiological data, which seeks to provide diagnostically 
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useful information to the decision-support system.  For example, a feature may be as simple as the moving 

average or the maximum value of a continually monitored vital sign.  Other features can be computationally 

more sophisticated, such as the rate of change of a signal or its signal power at a specific frequency.  We have 

developed algorithms that automatically compute features from standard vital signs, taking into consideration 

their variation through time.  Accordingly, we explored parameters related to temporal patterns that have 

diagnostic value, such as peaks, troughs, means, standard deviations, differences, and rates of change as well 

as much more complex “shapes” that appear as the parameter is plotted through time.  Regarding prehospital 

vital-sign features, we have several key findings:  

• During 21 min of transport time to a trauma center, vital-sign trends do not offer clinically useful 

discriminatory power (ROC AUCs) to distinguish major hemorrhage cases versus controls (for all 

vital signs, ROC AUCs were not significantly better than 0.50) [17].   

• For each of the five basic vital signs, HR, RR, SpO2, SBP, and DBP, their 21-min averages for major 

hemorrhage cases are statistically significantly different than controls [17].   

• For each of the five vital signs, the magnitude of the 95% data range (averaged over all subjects) is 

considerably larger than the magnitude of any temporal trend [17]. 

• Using the 21-min averages of RR, HR, and SpO2 versus their initial values yielded improvements in 

ROC AUCs anywhere from +0.02 to +0.10 [17]. 

• Using wavelet transformation to represent the “shape” of HR plotted through time with a small 

number of parameters (i.e., wavelet coefficients) allows us to identify associations between temporal 

HR patterns and major hemorrhage.  A combination of ten automatically selected temporal HR 

patterns yielded a sensitivity of 0.68 and a specificity of 0.79 [18]; however, only 47 hemorrhage 

cases out of the 94 total cases in our database had continuous reliable HR for >2 min as required for 

this analysis, and the most frequent HR temporal pattern was present in only 23% of these cases. 

• We have combined multiple vital signs into a single “composite” variable via certain mathematical 

relationships.  For example, SBP and DBP were combined through subtraction to define the pulse 

pressure (PP), and RR was divided by PP to define the “breath index” (BI) [11], which is a novel 

predictor of major hemorrhage. Composite variables show increased AUCs compared with individual 

vital signs [11, 15], but they are not statistically significantly different than a linear combination of 

the basic constituent vital signs [15]. 

• Respiratory-induced waveform variation (RIWV) in the PPG is a feature that has been associated with 

hypovolemia in mechanically ventilated patients and in controlled laboratory environments [26, 27].  

We found that RIWV is a statistically independent predictor of major hemorrhage in our patient 

database, above and beyond a full set of standard vital signs, and that RIWV moderately improves the 

overall AUC of a multivariate statistical model [23].  However, as noted above, the majority of PPG-

waveform data in our database were found to be “unreliable.” 

4.0 ARTIFICIAL INTELLIGENCE CLASSIFIERS  

The diagnostic capability of our decision-support system is attained through artificial-intelligence-based 

classifiers, which are computer algorithms that take as inputs one or more vital-sign features and generate a 
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decision output to discriminate between two clinical outcomes, or classes, e.g., major hemorrhage cases and 

controls, in our application.  These artificial intelligence classifiers are typically “trained” on a proportion of a 

retrospectively collected dataset, and subsequently applied to the remaining “testing” dataset (or prospectively 

collected data) to discriminate between the possible clinical outcomes.   

4.1 Classifier Development 

Our classifier algorithms were developed through a systematic retrospective analysis of our database.  First, 

we thoroughly analyzed vital-sign features extracted from our patient database, such as the mean, variation, 

trend, and shape of the vital signs, and examined their discriminatory value under various time and data-

reliability conditions.  For example, as mentioned above, we found that using the 21-min averages of RR, HR, 

and SpO2 versus their initial values as input features to classifiers yielded improved performance, and that 

reliable RR, SBP, and SpO2 are more predictive of major hemorrhage than unreliable measurements.  Next, 

we compared univariate classifiers (i.e., classifiers with only one input vital-sign feature) against multivariate 

classifiers (i.e., classifiers with multiple input vital-sign features), and established that multivariate classifiers 

provided improved discrimination.  In addition, we compared the results obtained with linear against 

nonlinear classifiers, such as artificial neural networks and support vector machines, and found that nonlinear 

classifiers were not necessarily superior to simpler techniques [15, 22].  Finally, we used ensemble classifiers 

to address the problem of missing vital-sign data. An ensemble classifier consists of multiple linear “base” 

classifiers and an “aggregator” that combines the outputs of the base classifiers.  Ensemble classifiers have 

been reported in the literature to provide improved classification accuracy [28], because the integration of 

multiple separate classifiers, reporting an “ensemble” behavior, is less susceptible to idiosyncrasies in the 

data.  Regarding ensemble classifiers, we have the following key findings.   

• Our initial tests indicated that all of the vital-sign variables contain information useful for 

classification and that there is no consistent best-feature set for input into a classifier [22].  We also 

verified that composite variables, including PP and BI, do not provide additional information than 

their constituent vital signs [11, 15, 22].  Therefore, we only included the five monitor-calculated 

basic vital signs, HR, RR, SpO2, SBP, and DBP, as input features into the ensemble classifier.  

• There was no performance improvement, in terms of AUC, by using more than three inputs to the 

base classifier.  Hence, our ensemble consisted of 25 linear base classifiers corresponding to the 25 

possible combinations of one, two, and three input vital-sign features [22].   

• In general, the performance of ensemble classifiers is only weakly dependent on the selected 

aggregation method, such as majority vote, median, or average [29, 30].  Our preliminary results 

confirmed this observation and, therefore, for convenience, we aggregated the results of the base 

classifiers by averaging.   

• The performance of the ensemble classifier increases with the increasing length of reliable vital-sign 

time-series data [31, 32].  Accordingly, for classification at a given time t, we found that we should 

use all reliable data available up to time t.  

4.2 Classifier Evaluation 

We evaluated the performance of the ensemble classifier through separate training and testing datasets that 

were randomly selected from our database, where data from the training dataset were used to train the 

ensemble classifier, and data from the testing dataset were used to evaluate the classifier’s diagnostic 
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performance.  The use of separate training and testing datasets prevented us from overestimating the 

classifier’s performance.  To obtain a “representative” classifier performance, we trained/tested each classifier 

through 100 trials, each using 50% of the data for training and the remaining 50% for testing.  Because the 

two datasets had unbalanced hemorrhage versus control classes (almost 1:8), to reduce classifier bias, the 

training classes were balanced by upsampling (i.e., randomly repeating) hemorrhage patients until both 

classes had the same number of patients.  For each simulation, we computed the mean AUC and the 

corresponding 95% confidence interval (CI) based on the 100 testing trials. 

The ensemble classifier, as the average of linear base classifiers using all combinations of one, two, and three 

vital-sign features, had good diagnostic performance, generating a test AUC of 0.85 (95% CI 0.80-0.90) for 

distinguishing hemorrhage from control patients in the study population.  The classifier offered a sensitivity of 

85% at a specificity of 73% when retrospectively applied to the testing dataset (i.e., the set of data that is 

different from the set used to train the algorithm).  In contrast, we found that early field hypotension (i.e., SBP 

≤110 mmHg) was only 47% sensitive and 87% specific, as shown in Figure 1.  Note that these results are 

dependent on how features are computed and on data selection criteria, and may vary and degrade if applied 

to casualties with low-quality or missing data [22]. 

 

Figure 1.  Histogram showing how effectively different physiology measurements are able to discriminate 
between casualties with major hemorrhage (dark red bars) and control patients (light blue bars).  We summarize 
the receiver operating characteristic curve with the area under the curve (ROC AUC), where 1.00 represents a 
perfect classifier and 0.50 represents a random classifier.  We also report the optimal performance point [33] 
(dotted line) for each method.  Left: Using the initial field measurement of systolic blood pressure (SBP), with a 
cut-off of 110 mmHg, fewer than 50% of major hemorrhage patients are identified (sensitivity = 47%).  Right: 
Using the output of our ensemble classifier [22], we see a statistically significant improvement in classification, 
with sensitivity as high as 85%.   

 

The ensemble classifier was notably tolerant of missing data.  Among the 674 patients in the study population, 

only 399 (59%) patients had reliable data for each vital sign at some time during the transport.  This means 

that if we had used a conventional multivariate classifier for decision making that required the availability of 

each and every vital sign, we would have missed 275 (41%) patients.  We did require, however, that each 

patient had at least one reliable measurement from any of the five basic vital signs.  This rather mild 

requirement allowed us to diagnose all but 9 (1%) out of the total 898 patients.  We are developing signal-

processing technology that can recover vital signs from noisy waveform signals to further increase data 

availability [34].    
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5.0 DEVELOPMENT OF FIELD-DEPLOYABLE SYSTEM 

Our decision-support algorithms for data processing and hemorrhage diagnosis were developed 

retrospectively using our trauma database.  Such retrospectively developed algorithms may be subject to 

idiosyncrasies of our specific database, and may not perform as well in real-time, prospective clinical settings 

because of unanticipated operational problems and multiple confounding factors, such as motion artifacts, 

caregiver interventions, and sensor failures, which are ubiquitous in unrestricted clinical environments.  To 

evaluate the prospective performance of any in-house-developed decision-support algorithm and assess its 

sensitivity and potential limitation in actual clinical environments, we developed a plug-and-play 

software/hardware system, termed APPRAISE (Automated Processing of the Physiologic Registry for the 

Assessment of Injury Severity), that can collect physiological data, and run and test decision-support 

algorithms in real time [35, 36].   

5.1 The APPRAISE System for Real-Time Data Collection & Testing of Decision-Support 

Algorithms 

Our APPRAISE system is an integrated hardware and software system developed for the real-time collection 

of physiological data and for the plug-and-play testing of novel decision-support algorithms during actual 

clinical operations.  The APPRAISE hardware system consists of a standard-of-care vital-sign monitor, and a 

ruggedized ultramobile personal computer (PC) [see Figure 2].  The vital-sign monitor is a Welch Allyn’s 

(Skaneateles Falls, NY) Propaq Encore 206EL monitor [20] with the Acuity Port option, and the ruggedized 

PC is Roper Mobile Technology’s (Tempe, AZ) Switchback [37] running the Microsoft Windows XP 

operating system with 2 GB of memory and a 32-GB solid-state drive.  The Propaq is mounted on top of a 

small cage, which houses the PC and acts like a pedestal (Figure 2, left panel).  The PC is connected to the 

Propaq through an RS-232 to USB adapter.   

 
 
Figure 2.  The APPRAISE software/hardware system for clinical field trials of decision-support algorithms [35, 36].  
Left: A standard Propaq travel monitor (A; Welch Allyn; Skaneateles Falls, NY) is mounted atop a protective cage 
(B), which contains a ruggedized Switchback personal computer (PC) [Roper Mobile Technology; Tempe, AZ] 
[37].  These two devices are connected together; see text for details.  Right: Bottom view of the cage, showing the 
exposed touch-sensitive screen of the ruggedized Switchback PC. 
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The APPRAISE software system consists of in-house-developed software for collecting physiological time-

series waveform and vital-sign data, which runs on the ruggedized PC.  During patient monitoring, the 

software system timestamps and stores physiological data received from the monitor.  It then runs, in real 

time, decision-support algorithms implemented in MATLAB [38], which is a high-level computer language 

and the de facto standard for digital signal processing, data analysis, and rapid software prototyping 

throughout engineering and physical science communities, to perform analysis on the collected data.  Any 

decision-support algorithm that is implemented in MATLAB can be run in the APPRAISE system and will 

require only a matter of several minutes to install.  As a result of this plug-and-play functionality, it will be 

relatively feasible to deploy our system in additional arenas in which Propaq monitors are in use.    

To test the APPRAISE system, as well as any decision-support algorithm it carries prior to their field use, we 

developed a Propaq emulator, which simulates the transmission and processing of physiological time-series 

data, such as the ones available in our trauma database.  The emulator transmits data to the PC using the 

Propaq communication protocol, allowing us to test the functionalities of both the APPRAISE system and any 

accompanying decision-support algorithm.  One exemplary use of the emulator is to introduce known types of 

errors in the simulated data, e.g., to mimic situations of short communication break, sudden unexpected 

hardware interruption, and signal corruption by certain noise, and test whether the entire system can function 

continuously regardless of these errors.  Most importantly, after actual data have been collected, we can use 

the emulator to playback the time-series data in a deterministic and simulated environment, so that field 

failure scenario can be retrospectively examined.  Such functionality is especially important for the 

development of medical decision-support tools that must work robustly and reliably under chaotic combat 

field environments.  

5.2 Evaluation of the APPRAISE System 

We assessed the performance of the APPRAISE system by simulating the real-time data environment for 

patients in our database, while running the decision-support algorithms we have created, including the data-

reliability and hemorrhage-diagnosis algorithms.  Specifically, we randomly selected 20 patients from the 

study population with different degrees of data reliability and data length, and ran the Propaq emulator to 

simulate real-time data transmission and processing.  We compared the input data submitted to the 

APPRAISE system with what were made available to the decision-support algorithms to verify that data 

collection was functioning correctly. We also compared the results of the decision-support algorithms with 

those obtained off-line from a desktop PC.  We were able to perfectly duplicate the algorithms’ results, thus 

proving that the entire system was performing as intended.  

Our decision-support algorithms were able to perform in real time on the APPRAISE system.  The average 

algorithm execution time, including estimating vital-sign data reliability, vital-sign feature extraction, and 

ensemble classification, was 16 s, and the maximal time was 34 s for the randomly selected 20 patients.  This 

performance test supports the prospective use of diagnostic decision support as frequently as every minute.  In 

case any individual algorithm’s execution time exceeded one minute, the algorithm would execute at the next 

available time slot, or immediately if two time slots had already been skipped.  These results ensure that our 

decision-support algorithms can be readily deployed for real-time applications. 

6.0 PROSPECTIVE FIELD VALIDATION 

We have just started the initial phase of the prospective validation of the APPRAISE system, which integrates 

field data collection and decision support in a single small unit, for hemorrhage diagnosis.  We have obtained 
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institutional review board approval from the Massachusetts General Hospital (MGH) and the U.S. Army (Fort 

Detrick, MD) to perform a prospective field trial of our APPRAISE system and related decision-support 

algorithms in acute trauma patients en route to MGH via Boston MedFlight helicopters.   

7.0 CONCLUSION  

We have developed a system in which data from standard vital-sign monitors are used as diagnostic indicators 

of major hemorrhage, incorporating cutting-edge, real-time artificial intelligence classifier algorithms that 

provide decision support for trauma casualty care.  Our algorithms’ retrospective performance, expressed as 

the area under an ROC curve was 0.85, which falls within a “good” classifier range.  An AUC of 0.85 can be 

interpreted to mean that, applying our algorithm to two subjects, one from each outcome class, the subjects 

will be accurately classified 85% of the time [39].  The algorithms used only conventional apparatus, avoiding 

the need to train thousands of clinicians to use novel instrumentation, and they are applicable to 99% of the 

field patients who present any available vital sign.  Such capabilities are not fanciful: we are currently field-

testing these algorithms during the transport of civilian trauma casualties using the APPRAISE system.   

The APPRAISE system we developed offers the ability to rapidly insert a novel decision-support algorithm 

into actual clinical operations.  This provides major benefits.  First, algorithm developers can get rapid 

feedback on any new algorithm.  Because algorithm development can be challenging, it is essential to run 

real-world tests and make multiple iterative improvements.  The system promotes iterative design cycles with 

minimal expense and time.  Second, the system can simultaneously compare competing analytic strategies and 

algorithms at the same time.  Such head-to-head comparisons will promote good technologic approaches and 

identify inferior ones, so that future development resources are invested appropriately.  Finally, in the future, 

the system can be modified to accept and process novel investigational sensors and provide output of the 

decision-support algorithms to medics in real time.  Ultimately, the system should illuminate the capabilities 

and limitations of standard vital signs for decision support and offer a benchmark against which novel sensors 

and approaches should be compared.   

Given the initial successful development of the APPRAISE system for hemorrhage diagnosis, we plan to 

accelerate and expand the scope of our program’s activities in the near future.  Our objective is to deliver a 

complete, integrated suite of automated decision-support tools for assessing the need for life-saving 

interventions of trauma casualties due to: (1) major hemorrhage, (2) respiratory compromise, (3) traumatic 

brain injury, and (4) overall mortality.  We will apply novel signal-processing techniques that correct 

unreliable physiological signals (reliance on noisy data significantly impairs algorithm performance, as 

discussed above), build statistical models that can be used for prospective diagnostic applications, and 

integrate the technologies we have developed, i.e., integration of data-reliability, data-correction, and multiple 

diagnostic algorithms, into a single, integrated software application.  The system will be a fully functional, 

clinically validated prototype that can be provided to an industry partner for full productization.  In doing so, 

we will also possess the infrastructure necessary for further testing of commercial implementations of these 

technologies.  Ultimately, our work will establish the full extent of what can be done with the monitoring 

capabilities in widespread use today, so the U.S. Army can better evaluate other novel technologies and 

promote promising new sensors while disregarding those that are no more useful than standard vital signs.   
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