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H I G H L I G H T S

� We modeled the dose-dependent effects of caffeine on human vigilance.
� The model predicted the effects of both single and repeated caffeine doses.
� We developed and validated the model using two laboratory studies.
� Individual-specific caffeine models outperformed population-average models.
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a b s t r a c t

Caffeine is the most widely consumed stimulant to counter sleep-loss effects. While the pharmacoki-
netics of caffeine in the body is well-understood, its alertness-restoring effects are still not well
characterized. In fact, mathematical models capable of predicting the effects of varying doses of caffeine
on objective measures of vigilance are not available. In this paper, we describe a phenomenological
model of the dose-dependent effects of caffeine on psychomotor vigilance task (PVT) performance of
sleep-deprived subjects. We used the two-process model of sleep regulation to quantify performance
during sleep loss in the absence of caffeine and a dose-dependent multiplier factor derived from the Hill
equation to model the effects of single and repeated caffeine doses. We developed and validated the
model fits and predictions on PVT lapse (number of reaction times exceeding 500 ms) data from two
separate laboratory studies. At the population-average level, the model captured the effects of a range of
caffeine doses (50–300 mg), yielding up to a 90% improvement over the two-process model. Individual-
specific caffeine models, on average, predicted the effects up to 23% better than population-average
caffeine models. The proposed model serves as a useful tool for predicting the dose-dependent effects of
caffeine on the PVT performance of sleep-deprived subjects and, therefore, can be used for determining
caffeine doses that optimize the timing and duration of peak performance.

Published by Elsevier Ltd.

1. Introduction

Caffeine is the most widely used stimulant drug in both
occupational and non-occupational settings. Results from numer-
ous laboratory and field studies have shown that caffeine main-
tains (Kamimori et al., 2005) or restores (Penetar et al., 1993)
neurobehavioral performance in sleep-deprived individuals, with
minimal side effects (Bonnet et al., 2005; Brice and Smith, 2002).
In the majority of these studies, caffeine has been administered as

a single bolus dose of 600 mg (Wesensten et al., 2002; Wesensten
et al., 2005) or as smaller, repeated doses of 50, 100, 200, or
300 mg (Kamimori et al., 2005; LaJambe et al., 2005). In these dose
ranges, increasing caffeine intake progressively enhances its sti-
mulant effects.

The pharmacokinetics (PK) of caffeine and its dose-dependent
metabolism in humans have been well characterized (Bonati et al.,
1982; Denaro et al., 1990), and its mechanism of action (antagonism
of adenosine receptors) is also well-understood (Bertorelli et al.,
1996). However, the pharmacodynamic (PD) effects of caffeine
on neurobehavioral performance under sleep loss conditions are
not well characterized. A limited number of studies (Wesensten
et al., 2002, 2005; Killgore et al., 2008; Kamimori et al., 2005;
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LaJambe et al., 2005; Penetar et al., 1993) have assessed the effects
of caffeine on objective measures of performance during total sleep
deprivation (TSD), but none under the more realistic chronic sleep-
restriction condition. Further, the TSD studies differed widely in
terms of (1) caffeine dose used, (2) frequency of dosing, (3) timing
of dose across the sleep-loss period, and (4) neurobehavioral out-
come metric utilized, making it difficult to characterize the caffeine
effects. Although the TSD studies provide a basic understanding of
the PD effects of caffeine, their utility could be enhanced by the use
of mathematical models that could describe and predict such
effects. In fact, mathematical models could be used to quantify
the dosage and timing of caffeine intake so as to safely achieve
performance peaks at the desired time of day.

Only two studies have been published that focus on modeling the
neurobehavioral performance-enhancing effects of caffeine in
humans, especially under acute sleep-loss conditions. In a seminal
work, Puckeridge et al. (2011) proposed a 21-parameter model of
caffeine's effects on sleep-wake dynamics, with five of the 21
parameters representing caffeine effects. While such a large number
of parameters often provide the necessary degrees of freedom for the
model to fully capture and fit the variability in the data, it also
presents an inherent practical limitation, particularly if the goal is to
develop individual-specific models, where the model parameters
need to be customized (from limited data) to a particular individual.
In addition, their caffeine model assumes a dose-independent PK
elimination rate, which contradicts the well-established dose-depen-
dent metabolism of caffeine that results in lower PK elimination rates
at higher doses and is particularly prevalent under TSD scenarios
(Denaro et al., 1990; Kamimori et al., 1995; Kaplan et al., 1997).
Finally, in their work, the effects of caffeine were validated only on
subjective sleepiness scores, which may not reflect objective cogni-
tive performance measures (Van Dongen et al., 2003).

Recently, we proposed a parsimonious eight-parameter biomathe-
matical model of the alertness-restoring effects of caffeine under TSD
conditions (Ramakrishnan et al., 2013). Although the model was able
to capture the effects of both single and repeated caffeine doses and
was validated on objective measures of performance from two
different studies, it was not a dose-dependent model as it did not
provide a means to predict the effects of different caffeine doses.

In this work, we attempt to overcome this limitation by
proposing a biomathematical model that quantifies caffeine's
neurobehavioral effects as a function of dose under both single
and repeated dosing scenarios, while accounting for the dose-
dependent metabolism of caffeine in the body. This provides the
needed capability to predict the effects of different caffeine doses
using a single model. We developed and validated the proposed
model, at both population-average and individualized levels, on
objective measures of performance collected from two different
TSD laboratory studies. Specifically, we developed a population-
average model using data from subjects in one study and predicted
the effects of a range of caffeine doses on psychomotor vigilance
task (PVT) performance of subjects from a second study, and vice
versa. In addition, we showed that the individual-specific model
predictions were, on average, 23% better than those of the
population-average model.

Because baseline measures of performance (i.e., first �20 h)
generally vary from study to study, they need to be normalized to
allow for proper inter-study comparisons. In addition, order-of-
visit effects have been observed in crossover design studies
involving repeated measures (Fayers and King, 2008; Senn,
1988), and require appropriate data processing to eliminate these
effects before analysis of the data. Here, in addition to the
proposed model, we also developed methods to normalize per-
formance data and eliminate both within- and between-study
baseline imbalances to facilitate model development and cross
validation using data from different studies.

2. Methods

2.1. Study data

We used PVT data from two studies. The PVT is a simple (one-
choice) reaction-time task in which subjects press a button in
response to a visual stimulus that is presented on a random
interval (2–10 s) schedule over a 10-min period, resulting in
�100 stimulus-response pairs (Dinges and Powell, 1985; Dorrian
et al., 2005). For modeling purposes, we calculated the number of
response times exceeding 500 ms (the conventional threshold for
a lapse) to quantify performance impairment. More lapses indicate
greater neurobehavioral performance impairment.

In the first study (study A), we used PVT data obtained from a
controlled laboratory experiment involving 48 healthy young adults
who were kept awake for 29 consecutive hours (Kamimori et al.,
2005; Syed et al., 2005). The 48 subjects were randomly assigned to
one of the four dose groups (placebo, 50, 100, or 200 mg, n¼12
subjects/group) and were administered the corresponding dose of
Stay Alerts (Amurol Confectioners, Yorkville, IL) caffeinated chew-
ing gum at the beginning of each of three 2-h test blocks after 20,
22, and 24 h of sleep loss (corresponding to 0300, 0500, and 0700 h,
respectively, on day 2). All subjects completed 10-min PVTs starting
at 0800 h on day 1 and ending at 1200 h on day 2, for a total of 29
PVT sessions, including nine sessions before caffeine administration,
six sessions during each of the three subsequent 2-h test blocks,
and two additional tests after the third 2-h test block.

The data from the second study (study B) were collected as part
of a randomized Latin Square crossover experiment across four
laboratory sessions, each separated by at least 1 mo (washout
period), in which 16 healthy young adults were kept awake for 27
consecutive hours (LaJambe et al., 2005). During each of the four
laboratory sessions, subjects were administered placebo, 100, 200,
or 300 mg of Stay Alerts caffeinated chewing gum three times
(the same dose of caffeine was administered in each of the three
times) after 20, 22, and 24 h of sleep loss (corresponding to 0300,
0500, and 0700 h, respectively, on day 2). Subjects completed
10-min PVTs starting at 0800 h on day 1 and ending at 1000 h on
day 2, for a total of 27 PVT sessions, including nine sessions before
caffeine administration and six sessions after each of the three
caffeine gum administrations.

All subjects in study A were habitually low to moderate caffeine
users, with an average, self-reported daily caffeine consumption of
o400 mg. However, subjects in study B were either habitually low
(o100 mg/day, n¼8) or habitually high (4400 mg/day, n¼8)
caffeine users; nevertheless, the differences in PVT performance
between the habitually low and habitually high caffeine users
were not statistically significant [Wilcoxon rank-sum test; p40.05
(Zar, 1999)] for each of the four doses (placebo, 100, 200, and
300 mg). Consequently, we did not differentiate subjects based on
their habitual caffeine usage in the ensuing analyses. All subjects
in both studies reported a total sleep time of �6–9 h for the night
preceding study participation. Both studies were approved by the
Walter Reed Army Institute of Research Human Use Committee
(Silver Spring, MD) and the United States (U.S.) Army Medical
Research and Materiel Command Human Subjects Review Board
(Ft. Detrick, MD), and written informed consent was obtained from
all subjects prior to their participation.

2.2. Data screening and normalization

For study A, two subjects (one from placebo and one from
100 mg group) were excluded from analyses due to missing data,
resulting in a sample size of 11 subjects for placebo and 100 mg
groups. Three subjects from study B (crossover design) were
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excluded due to missing data, resulting in a sample size of 13
subjects in this study.

Despite the 1-mo washout period between the repeated
laboratory visits in study B, we observed an order-of-visit effect
in the subjects’ PVT data such that, for a given subject, PVT
performance worsened across visits. Statistical comparisons [Wil-
coxon paired, two-sided, signed-rank tests (Zar, 1999)] between
pre-caffeine data from the first and last visits indicated that the
performance during the last visit was significantly worse than that
in the first visit (po0.05). To correct for this order-of-visit effect,
we developed a generalized additive modeling (Hastie and
Tibshirani, 1990) approach to quantify and eliminate this effect
from each subject's PVT data. Next, to perform inter-study com-
parisons (across studies A and B) we normalized the performance
data to eliminate baseline differences between the two studies. To
this end, we applied an affine transformation (Hastie et al., 2001)
to study B data. Details pertaining to the elimination of order-of-
visit effect (within-study normalization) and elimination of base-
line differences (between-study normalization) are provided in
Appendix A.

2.3. Model of dose-dependent effects of caffeine on PVT lapses

To develop a dose-dependent model of the effects of caffeine
on PVT lapses, we first determined the dependency of the para-
meters of the model proposed by Ramakrishnan et al. (2013) as a
function of caffeine dose. In that model, we hypothesized that,
after caffeine intake, the PVT performance estimate [Pc(t)] of a
sleep-deprived individual at a discrete-time index t can be
formulated as follows:

PcðtÞ ¼ P0ðtÞ � gPDðtÞ; ð1Þ
where P0(t) represents the individual's performance without
caffeine (referred to as caffeine-free performance) at time awake
t and gPD(t) represents the caffeine effect factor, with 0rgPD(t)r1,
where 1 corresponds to PD effects in the absence of caffeine, i.e.,
the most impaired performance, and 0 corresponds to the max-
imal PD effect on PVT performance, i.e., complete restoration with
no impairment. Fig. 1 shows a schematic of the effects of caffeine
dose D on performance Pc(t,D) and on the caffeine effect factor
gPD(t,D).

To characterize caffeine-free performance P0(t) (i.e., perfor-
mance under sleep deprivation alone), we used the widely
accepted two-process model of sleep regulation (Borbely, 1982),
in which performance at time t is a function of the additive inter-
action of a process reflecting sleep debt (homeostatic Process S)
and a process that reflects the circadian rhythm (Process C).
Mathematically, in discrete-time notation, P0(t) can be expressed
as follows (Achermann and Borbely, 1994; Rajaraman et al., 2008;
Ramakrishnan et al., 2013):

P0ðtÞ ¼ α�αS0exp½�ðt�1ÞρTs�þβ ∑
5

i ¼ 1
ai sin

2π
τ
i½ðt�1ÞTsþϕ�

� �
;

ð2Þ
where α and β denote parameters that control the relative effect of
processes S and C on performance, respectively, ρ represents the
buildup rate of sleep pressure, Ts denotes the sampling period, S0
represents the initial sleep pressure state (which depends on the
prior sleep/wake history), τ denotes the fundamental time period
of the circadian clock (�24 h), ai (where i¼1, …, 5) represent the
amplitudes of the five harmonics of Process C, and ϕ denotes the
initial circadian phase. Here, we chose to keep the amplitudes of
the five harmonics (a1¼0.97, a2¼0.22, a3¼0.07, a4¼0.03, and
a5¼0.001) and the fundamental period (τ¼24 h) constant over
time, thereby enforcing the shape of Process C to be identical
among all individuals (Achermann and Borbely, 1992). The five

parameters, α, ρ, β, S0, and ϕ, were estimated from caffeine-free
PVT performance measurements using the approach proposed by
Rajaraman et al. (2009).

To model the caffeine effect factor (gPD), we used the one-
compartment PK model of caffeine (Bonati et al., 1982; Kamimori
et al., 2002), related PK and PD through the Hill equation (Csajka
and Verotta, 2006), and expressed gPD of caffeine dose D, adminis-
tered at time index t0, as follows:

gPDðt;DÞ ¼ f 1þMDexp½�kDTsðt�t0Þ�g�1 for tZt0; ð3Þ
where Ts denotes the sampling period andMD and kD represent the
amplitude factor and elimination rate parameters of the caffeine
model, respectively, which depend on caffeine dose D.

We used the following linear model to capture the effect of
dose on MD:

MD ¼M0 � D; ð4Þ
where M0 ¼ ðF=VdgPK50

Þ is the amplitude slope. Here, F and Vd

denote the bioavailability of caffeine and volume of distribution in
the body, respectively, and gPK50

represents the caffeine concentra-
tion at which gPD attains half of its maximum effect (Ramakrishnan
et al., 2013).

Prior studies on the PK and PD of caffeine under sleep
deprivation scenarios have shown that the elimination rate of
caffeine decreases with increasing dose (Denaro et al., 1990;
Kamimori et al., 1995; Kaplan et al., 1997). We thus modeled the
effect of dose on the elimination rate parameter kD using the
following exponential relationship:

kD ¼ k0expð�zDÞ; ð5Þ
where k0 and z denote the basal elimination rate and the decay
constant, respectively. In what follows, we refer to M0, k0, and z as
the dose-dependent caffeine model parameters.

The gPD model in Eq. (3) does not consider the absorption of
caffeine. This is a reasonable approximation for caffeine when
ingested via coffee, tea, energy drinks, and most gum products,
where the absorption rate is much faster (by a factor of greater
than 15) than the elimination rate. For example, the Stay Alerts
gum administered in studies A and B releases �85% of its caffeine
dose within the first 5 min of gum chewing (Kamimori et al.,
2002), and therefore has a significantly faster absorption rate than
elimination rate.

2.4. Extension of the gPD model for repeated doses

In our previous work (Ramakrishnan et al., 2013), we assumed
that the elimination rate is independent of caffeine dose. This
assumption allowed us to use linear superposition to extend the
single-dose PK model for repeated doses. However, we cannot use
this same principle here to compute gPD in Eq. (3) because the
elimination rate kD in Eq. (5) decreases with cumulative increases
in caffeine concentration from repeated doses. Therefore, for
repeated doses, we modified Eq. (3) so that at the beginning of
each dose the amplitude factor and the elimination rate were
adjusted based on extant plasma caffeine concentration.

Accordingly, the PD effect after j doses of caffeine of strengths
D1, D2, …, Dj administered at discrete-time indices t1, t2, …, tj,
respectively, can be expressed as follows:

gPDðt;DjÞ ¼
1 for tot1

ð1þMDjexp½�kDjTsðt�tjÞ�Þ�1 for tZtj; j¼ 1;2;…;

(

ð6Þ
where MDj and kDj denote the effective amplitude factor and
elimination rate parameters, respectively, that depend on the
caffeine concentration at time tj. Using Eqs. (4) and (5), these
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parameters can be expressed as follows:

MDj ¼M0 � ½DjþEðt�j Þ� and kDj ¼ k0expf�z½DjþEðt�j Þ�g; ð7Þ

where Eðt�j Þ is the equivalent caffeine dose representing the
caffeine concentration present at time tj immediately prior to the
administration of dose Dj. The expression for Eðt�j Þ follows from
the standard one-compartment PK model:

Eðt�j Þ ¼
0 for j¼ 1

½Eðt�j�1ÞþDj�1� exp ½�kDjTsðtj�tj�1Þ� for j¼ 2; 3;…

(

ð8Þ

The repeated-dose model in Eq. (6) reduces to Eq. (3) under single-
dose conditions. However, the model in Eq. (6) assumes that:
(1) each of the repeated caffeine doses are administered via the
same formulation and (2) gPK50

of the Hill equation, which affects
the amplitude slope M0, remains constant with repeated doses.

2.5. Population-average models

To develop a dose-dependent population-average caffeine
model for a study, we fitted the model described in Eqs. (1), (2),
and (6) to PVT lapse data from that study. Specifically, we first
obtained a population-average caffeine-free model P0 by fitting Eq.
(2) to data from the placebo group of subjects. We then obtained
the population-average caffeine model parameters (M0, k0, and z),
needed to estimate the dose-dependent population-average gPD,
by minimizing the combined sum of the squared errors between
the caffeine model and the data from the different caffeine dose
groups in the study. For example, in study A, we minimized the

following objective function to obtain M0, k0, and z:

JðM0; k0; zÞ ¼ ∑
t0 þT�1

t ¼ t0
½P50

cmðtÞ�Pcðt;50Þ�2þ½P100
cm ðtÞ�Pcðt;100Þ�2

þ½P200
cm ðtÞ�Pcðt;200Þ�2; ð9Þ

where P
D
cm denotes the population-average data from the D-mg

dose group, t0 denotes the time index of the first caffeine dose
administration, T represents the total number of PVT measure-
ments taken after the first caffeine administration, and Pcðt;DÞ
denotes the population-average performance model after repeated
administrations of caffeine doses of D mg, which is given by

Pcðt;DÞ ¼ P0ðtÞ � gPDðt;DÞ; ð10Þ
where gPDðt;DÞ is computed from Eq. (6). Because the repeated
doses could be of different strengths, we used a more general form
of Eq. (10):

Pcðt;DjÞ ¼ P0ðtÞ � gPDðt;DjÞ; ð11Þ
where Dj represents the caffeine strength at the j-th dose.

2.6. Individual-specific models

To develop individualized dose-dependent caffeine models for
each subject i, we first obtained the caffeine-free component of the
model Pi

0 by fitting Eq. (2) to the i-th subject's performance data
obtained under placebo administration. We then computed a
population-average giPD t;Dj

� �
using the approach described in

the previous section. However, in computing the population-
average giPD for a study, we excluded performance data from the
i-th subject. Accordingly, to predict performance of the i-th subject

Fig. 1. Schematic showing the development of the dose-dependent caffeine model. Performance at time t following a dose Di (i¼1 or 2, for this example) of caffeine Pc(t, Di)
is modeled as the product of (a) performance during sleep deprivation in the absence of caffeine (caffeine-free performance) P0(t), which is based on the two-process model
of sleep regulation, and (b) a caffeine effect factor gPD(t, Di), with 0rgPD(t, Di)r1, which is governed by two dose-dependent parameters, MDi and kDi, representing the
amplitude factor and elimination rate, respectively. PVT, psychomotor vigilance task.
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at time t for the j-th caffeine dose Dj, we used

Pi
cðt;DjÞ ¼ Pi

0ðtÞ � giPDðt;DjÞ: ð12Þ

2.7. Goodness of fits

To assess the goodness of fits, we calculated the root mean squared
error (RMSE) between the population-average model fits (and the
individual-specific model predictions) and the performance data.

3. Results

We used population-average data from each study to obtain the
dose-dependent caffeine model parameters (M0, k0, and z) and the
corresponding population-average caffeine model fits. We then
compared the fits and the cross-study predictions. Finally, we used
study B data to construct individual-specific caffeine-free models
Pi
0 and individual-specific caffeine models Pi

c, and compared them
with population-average models (P0 and P

i
c½ ¼ P0 � giPD�).

3.1. Population-average model fits and cross-study predictions

Using Eqs. (2), (6), and (11), we computed two sets of
population-average model parameters by fitting these equations
on population-average data from studies A and B. The caffeine-free
model parameters (α, ρ, β, S0, and ϕ) obtained from the two
studies are listed in Table B.1 (see Appendix B). Table 1 lists the
three caffeine model parameters (M0, k0, and z) and their corre-
sponding 95% confidence intervals for each study. We observed
that M0 and z in study B were �20% lower than their respective
values in study A, while the basal elimination rate k0 was �40%
higher. Fig. 2 illustrates the relationship of the amplitude factorMD

(left panel) and elimination rate kD (right panel) as a function of
caffeine dose in studies A and B. The higher elimination rates
observed in study B compared to study A were primarily due to the
differences in the population-average PVT performance of the
placebo groups P0 in the two studies, where P0 in study B was
almost 10 PVT lapses smaller than that in study A after the second
and third placebo administrations. This resulted in larger
gPDðtÞ ¼ PcðtÞ=P0ðtÞ in study B (i.e., caffeine exerted a smaller effect
on performance), which translated into higher elimination rates. In
contrast, the effect of dose on the amplitude factor MD in both
studies was similar.

We assessed the caffeine model fits by calculating the RMSEs
between the fits and the population-average performance data for
each of the three caffeine dose groups in each study. To assess the
ability of the models to predict the effects of different caffeine
doses in a different study, we computed RMSEs between
population-average data from one study and population-average
model predictions, where the model was fitted on data from
the other study. In these assessments, we computed RMSEs for
(1) the first 2-h test block (i.e., after the first caffeine dose) and
(2) the combined three 2-h test blocks (i.e., after three repeated

caffeine doses). Fig. 3 shows population-average caffeine model
fits and cross-study predictions of post-caffeine performance for
the first 2-h test block (i.e., after the first caffeine dose only) in
studies A and B. Fig. 3, top, shows the population-average PVT lapse
data for study A in the three caffeine dose groups (50, 100, and
200 mg; one in each panel), population-average model fits on
these data, and model predictions based on a model trained using
the entire study B data. The figure also shows the population-
average caffeine-free model P0, obtained by fitting P0(t) in Eq. (2)
to the placebo data averaged across all subjects in the study.
Similarly, Fig. 3, bottom, shows data for study B, model fits on these
data, and model predictions based on a population-average model
trained on the entire study A data. The caffeine models derived
from both studies captured the dose-dependent effects of caffeine
on performance and showed improved fits to the data compared
to the caffeine-free models [i.e., P0¼Pc in Eq. (11) with gPD ¼ 1].
We observed similar results for the repeated-dose conditions (see
Fig. C.1 in Appendix C).

Table 2 lists RMSEs of the population-average model fits and
model predictions for both single- (first dose) and repeated-dose
conditions. It also lists the associated RMSEs of the caffeine-free
models within parentheses, where the caffeine-free predictions
correspond to cross-study model fits (i.e., the caffeine-free model
fit for study B is used as a prediction for study A, and vice versa).
The RMSEs of the caffeine models were smaller than their
caffeine-free counterparts and this difference increased with
larger caffeine doses. This suggests that the caffeine model is
capturing the dose-dependent effects of caffeine. Across the two
studies, the caffeine models showed 57–90% and 17–88% improve-
ments over the caffeine-free models fits and predictions, respec-
tively. RMSEs of the caffeine model predictions in both single- and
repeated-dose conditions were only marginally higher than the
corresponding fits, indicating good predictive capabilities.

3.2. Individual-specific model predictions

Using the repeated-dose caffeine model in Eq. (12), we also
developed individual-specific caffeine models Pi

c to predict post-
caffeine performance of each individual in study B (crossover
design study). We compared these predictions with the corre-
sponding individual-specific, caffeine-free model estimates Pi

0 (in
Eq. (12) used to compute Pi

c) and the population-average caffeine
model predictions (P

i
c ¼ P0 � giPD in Eq. (11) based on study B data

while excluding data from the i-th subject). Fig. 4 shows the model
predictions after the first caffeine dose (0300 h) for three subjects,
Subject #1 (top), Subject #2 (middle), and Subject #12 (bottom),
who displayed different levels of sensitivity to caffeine, based on
visual inspection of their performance after placebo and caffeine
administration. For Subject #1 (high sensitivity to caffeine), both
Pi
c and P

i
c predicted the dose-dependent effects of caffeine for each

of the three caffeine doses better than Pi
0. For Subject #2 (medium

sensitivity to caffeine), Pi
c provided more accurate prediction than

Pi
0 and P

i
c for the 100-mg dose condition but not for the 200- and

300-mg conditions. For the latter two caffeine doses, performance
improved immediately after caffeine intake but dissipated quickly
after �30 min. For Subject #12 (low sensitivity to caffeine), Pi

c and
P
i
c predictions were similar to each other and more accurate than

the Pi
0 estimates only for the 200-mg dose condition. For the 100-

and 300-mg conditions, the subject appeared to be insensitive to
caffeine. Model predictions for repeated caffeine doses for the
same three subjects are shown in Appendix D (Figure D.1).

Table 3 shows a comparison of RMSEs of the individual-specific
caffeine model predictions with those of the corresponding
caffeine-free model estimates to assess the benefit of accounting
for the effects of single caffeine doses of 100, 200, or 300 mg on
performance in study B subjects. The table also lists the overall

Table 1
Caffeine model parameters obtained by fitting the model on studies A and B
population-average psychomotor vigilance task lapse data after caffeine adminis-
tration (Z20 h). Data from all three post-caffeine/placebo-administration test
blocks (20–22 h, 22–24 h, and 24–26 h of sleep loss) were used to develop the
models for each study. Also listed in parentheses are the 95% confidence intervals.

Study M0 (g�1)
(amplitude slope)

k0 (h�1)
(basal elimination rate)

z (g�1)
(decay constant)

A 9.86 (6.96–13.98) 0.49 (0.28–0.88) 1.63 (0.59–4.46)
B 7.73 (5.57–10.71) 0.70 (0.41–1.19) 1.25 (0.50–3.12)
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mean RMSE over the three dosing conditions, for Pi
c and Pi

0, for
each subject, and the average RMSEs across the 13 subjects. Pi

c
performed better than Pi

0 in at least nine of 13 subjects in each
dosing condition, with average improvements ranging from 12%
for low (100 mg) caffeine doses to 39% for high (300 mg) doses.

Fig. 5 shows a bar-chart comparison of the average (n¼13)
RMSEs for four different models for a single caffeine dose of 100,
200, and 300 mg in study B: (1) population-average caffeine-free
model P0, (2) individual-specific caffeine-free model Pi

0, (3)
population-average caffeine model P

i
c , and (4) individual-specific

0 200 400 600
0

2

4

6

8

Am
pl

itu
de

 fa
ct

or
 M

D
 

Dose D (mg) 
0 200 400 600

0.1

0.3

0.5

0.7

E
lim

in
at

io
n 

ra
te

 k
D
 (h

-1
) 

Dose D (mg) 

Study A
Study B

Study A
Study B

MD =M0D kD =k0 exp(-zD) 
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for MD and kD with caffeine dose, respectively, where the model parameters M0, k0, and z were obtained by optimizing the caffeine model on the combined data from all
caffeine dose groups (see Section 2.5 under Methods).
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caffeine model Pi
c . Also shown are the overall mean RMSEs for each

of the four model predictions across all three doses. Results of
statistical comparisons [Wilcoxon paired, two-sided, signed-rank
test (Zar, 1999)] between the average RMSEs are indicated by
asterisks for the comparisons that showed statistical significance
(po0.1). The caffeine models consistently yielded smaller average
RMSEs than their respective caffeine-free counterparts for all
dosing conditions, with the differences being significant for the
higher doses (200 and 300 mg). The RMSEs for the individual-
specific caffeine model predictions were smaller than those for the
population-average model for each of the dosing conditions, but
the improvement was statistically significant only for the 100-mg
dose (�23% improvement). Except for this lowest dose, we
observed a consistent trend in the errors (P04Pi

04P
i
c4Pi

c), with
the differences being significant for the overall RMSEs. Equivalent
comparisons for each of the three repeated caffeine doses showed
a similar RMSE trend: P04Pi

04P
i
c4Pi

c (Appendix E, Fig. E.1).

4. Discussion

Caffeine is an efficacious and widely used fatigue countermeasure.
However, its dose-dependent effects on neurobehavioral performance
have not been adequately characterized, limiting the development of
quantitative mathematical models. If available, such models could
serve as a tool to more accurately determine the timing and amount of
caffeine doses that result in performance peaks at the desired times
and that can safely prolong peak performance.

One of the most characteristic effects of sleep loss is degrada-
tion in vigilance, as measured by increased response time (Basner
and Dinges, 2011). Also, of the various tasks that are purported to
measure vigilance, PVT response speed has been shown to be the
most sensitive to varying levels of sleep restriction (second only to
speed of falling asleep on the Multiple Sleep Latency Test). PVT's
high sensitivity is attributed to its insusceptibility to practice
effects (Balkin et al., 2004). Furthermore, the PVT can be imple-
mented on mobile platforms, such as personal digital assistants,
that can be used in the operational environment.

The mathematical model described here captures the dose-
dependent effects of caffeine on PVT lapses during sleep loss.
It builds on our previously developed fixed-dose caffeine model
(Ramakrishnan et al., 2013), which estimates the effect of caffeine
by multiplying the phenomenological two-process model of sleep

regulation (used to characterize performance in the absence of
caffeine) with a caffeine-effect factor (gPD) that ranges from 0
(maximal caffeine effect) to 1 (no caffeine effect). The gPD factor is
based on the PK-PD sigmoidal relationship of caffeine derived via
the Hill equation. It is described by two parameters: (1) an
amplitude factor MD, which describes the magnitude of caffeine
effect, and (2) an elimination rate kD, which describes the duration
of caffeine effect.

Here, we incorporated dose-dependent effects into gPD by
modeling MD as a linearly increasing function of caffeine dose
and kD as an exponentially decreasing function of dose. Accord-
ingly, due to the sigmoidal shape of gPD, the magnitude of caffeine
effect [¼1/(1þMD)] increases with larger doses but only up to a
point (best PVT performance) beyond which the magnitude of the
effect saturates. However, the duration of effect keeps increasing
with dose, reflecting the saturable metabolic processes involved in
the clearance of caffeine (Cheng et al., 1990; Denaro et al., 1990).

In addition, we extended this model to capture the effects of
repeated caffeine doses by accounting for the effects of extant
caffeine concentration on parameters MD and kD at the time of
each subsequent caffeine dose administration. The resulting
model, containing a total of eight parameters (five parameters to
characterize performance in absence of caffeine and three para-
meters to represent dose-dependent caffeine effects), seems able
to predict the effects of single and repeated caffeine doses ranging
from 50 to 300 mg on PVT lapse performance of sleep-deprived
individuals.

We assessed the accuracy of the proposed dose-dependent
caffeine model in two ways: (1) by developing and cross-
validating a population-average model using performance data
from two separate repeated-dose studies (A and B) and (2) by
developing and validating individual-specific prediction models
based on performance data from study B. Prior to model develop-
ment and validation, we normalized the data to eliminate order-
of-visit effects observed in study B (crossover study) and to
eliminate baseline differences in PVT data between studies A and
B (techniques described in Appendix A). Although the modeling
results presented here are limited to PVT lapse data, we anticipate
that the model output can be scaled to represent other neurobe-
havioral performance statistics derived from PVT response time
measurements.

The population-average, dose-dependent caffeine models
obtained from studies A and B captured the dose-dependent effects
of caffeine on performance under both single- and repeated-
dosing regimens. The model fits and cross-study predictions were
substantially better (up to 88% and 90% for the single- and
repeated-dose scenarios, respectively) than the caffeine-free mod-
els (Table 2), with greater improvements typically observed in
larger doses. Although the model derived from study B had a faster
elimination rate than the model derived from study A (Fig. 2), the
models’ cross-study predictions were almost as good as their fits.
However, for the 100-mg dose group in study A and the 200- and
300-mg dosing conditions in study B, we observed that after the
third caffeine dose (after 24 h of sleep loss) the models predicted
better performance (fewer lapses) than was actually obtained
(Fig. C.1). In the datasets we utilized for modeling, time awake,
time of dosing, and circadian phase were confounded: that is,
repeated caffeine administrations occurred at the same times of
day and at the same point within time awake (i.e., first dose at
20 h of wakefulness at 0300 h, second dose at 22 h of wakefulness
at 0500 h, etc.). It may be that these confounds require redress in
future model iterations.

To predict post-caffeine performance of the subjects in study B, we
developed individual-specific caffeine models for every subject, where
the caffeine-free component was individualized and the caffeine-effect
multiplier gPD was based on a population-average model using data

Table 2
Root mean squared errors (RMSEs) of the caffeine model fits on population-
average, post-caffeine psychomotor vigilance task (PVT) lapse data for study A and
corresponding predictions using a model based on study B data, and vice versa. The
RMSEs were computed for the first dose only (administered at 20 h of sleep loss;
Fig. 3) and for all three repeated doses (administered at 20, 22, and 24 h of sleep
loss; Figure C.1). Numbers within parentheses reflect RMSEs of the corresponding
caffeine-free model fits and predictions. RMSE units are number of PVT lapses.

Dose (mg) Study A Study B

Fit Prediction Fit Prediction

First dose only (at 20 h of sleep loss)
50 2.25 (8.57) 2.62 (7.05) –

100 1.65 (11.56) 2.27 (9.81) 2.18 (8.78) 2.21 (10.37)
200 3.17 (18.41) 4.65 (16.59) 2.36 (13.81) 1.81 (15.44)
300 – 1.89 (13.79) 2.98 (15.64)
All three repeated doses (at 20, 22, and 24 h of sleep loss)
50 3.12 (11.46) 4.59 (5.57) –

100 5.94 (13.83) 6.38 (7.84) 3.18 (9.65) 3.08 (16.86)
200 2.44 (24.01) 2.90 (16.91) 3.43 (14.52) 3.90 (21.58)
300 – 4.68 (15.28) 5.70 (22.51)
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from all subjects except the subject to be predicted. We also compared
these results with those obtained from three other models:
population-average caffeine model, individual-specific caffeine-free
model, and population-average caffeine-free model. The caffeine
models yielded an average reduction in prediction error of 40% when
compared with their caffeine-free counterparts for single doses of 200
or 300 mg; the reduction in prediction error was only �13% for the
100-mg dose (Fig. 5). For repeated doses, the prediction errors were
reduced by 5% for 100mg, 30% for 200 mg, and 33% for 300 mg (Fig.
E.1). Further, the individual-specific caffeine model was consistently
better than the other models across all doses (Figs. 5 and Fig. E.1).

The proposed model has some limitations. One critical limita-
tion of the individual-specific caffeine model is the requirement of
individualized caffeine-free performance estimates. In the present
work, we used an individual's performance measured after

placebo intake to obtain the individualized caffeine-free perfor-
mance estimates. However, in practice, such data are unlikely to be
available. Alternatively, caffeine-free estimates could be obtained
by developing an individual-specific model along the lines pro-
posed by Ramakrishnan et al. (2013) using performance data
before caffeine intake. This approach, however, requires the
availability of sufficient performance data (�20 PVT data points)
so that model parameters of the caffeine-free model can be
customized to the individual (Rajaraman et al., 2008, 2009).

Another limitation of our proposed individual-specific caffeine
model is that the caffeine effect component of the model, gPD, is
based on a population-average effect. Individualizing gPD would
require availability of performance data after caffeine intake for the
specific subject we wish to predict, which may not be attainable in
practical applications. Recently, Retey et al. (2006) observed that
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performance in PVT tests was less impaired after prolonged
wakefulness in self-rated caffeine-insensitive individuals than in
caffeine-sensitive subjects, suggesting that the sensitivity of the
adenosinergic system affects both an individual's resilience to sleep
loss and sensitivity to caffeine, but in opposite directions. In other
words, those subjects with the largest impairment from sleep loss
showed the largest caffeine benefit (Landolt et al., 2012). This offers
the possibility of using performance data to ascertain the sleep-loss
phenotype of an individual, say, vulnerable, average, or resilient
(Ramakrishnan et al., 2012), and then use this information to adjust
the population-average gPD to reflect the individual's caffeine
sensitivity level.

In the present work, we modeled the effects of sleep loss and
caffeine on response time (lapses). Thus, a potential limitation of
the present model is that it is based on a simple (one-choice)
reaction-time task for which accuracy (or number of errors) is not a

relevant metric. Errors of commission can be approximated by
“false starts” (responding in the absence of a stimulus). However, in
the datasets used in the present work, errors of commission were
low and did not differ among caffeine conditions. Errors of omission
can be approximated by the number of lapses (responses exceeding
500 ms). This latter metric is indeed sensitive to both sleep loss and
to caffeine. Furthermore, because sleep loss generally manifests as
decreased response speed rather than increased error rates (Basner
and Dinges, 2011), PVT response time serves as a suitable metric for
modeling the effects of sleep loss and caffeine.

In both studies considered in the present work, volunteers were
also administered the Stanford Sleepiness Scale (SSS). However, SSS
scores did not differ statistically between placebo and caffeine
conditions (Kamimori et al., 2005). Because our interest is in metrics
of objective performance, we did not consider modeling SSS scores
—and indeed the failure to find SSS differences between placebo
and caffeine conditions supports observations from numerous
studies which show that subjective assessments are not appropriate
surrogates for objective performance (Van Dongen et al., 2003).

Caffeine's effects on higher-order complex cognitive capacities,
such as planning, sequencing, decision making, and memory, have
not been considered in this work. While relatively consistent
effects have been found with regard to the enhancement of
alertness following caffeine consumption, effects on executive
functioning (that include a broad spectrum of higher-order cog-
nitive abilities) appear to be mixed (Killgore et al., 2009; Klaassen
et al., 2013; Wesensten et al., 2005), showing different degrees of
effectiveness at restoring/sustaining performance depending on
the particular task in question and the caffeine dose amount.
However, the present modeling work is limited to characterizing
effects on alertness assessed through PVT and cannot be extra-
polated to performance on executive functioning. Further study is
thus required to identify the most suitable executive function tasks
for which caffeine elicits beneficial dose-dependent effects, so that
future efforts may be focused on modeling the effects of sleep loss
and caffeine on performance in these tasks as well.

To enhance the utility of the proposed model, we seek to
incorporate additional capabilities. In particular, we are developing
strategies to model the effects of caffeine on chronically sleep-
restricted individuals. We intend to extend the unified model of
sleep/wake dynamics recently developed by our group (Rajdev et
al., 2013) by incorporating the effects of caffeine under both
chronic sleep restriction and total sleep deprivation scenarios in
a single model. This supports our long-term goal of incorporating
these model components into an integrated computational tool
that prescribes countermeasures (e.g., the timing of naps and
timing and dosage of caffeine), to optimize an individual's neuro-
behavioral performance and thereby reduce the risk of sleep-loss
and/or circadian-desynchrony-related errors and accidents.

While many challenges remain, the proposed model provides
another step towards the development of a wearable computer-
based system that considers an individual's sleep/wake history,
current and recent-past performance, and caffeine consumption to
predict future levels of PVT performance (Khitrov et al., 2014).
In fact, with the widespread use of caffeine in both foods and
drinks, the ability to predict dose responses of caffeine in a single
model holds the key for establishing such a unique capability.
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Table 3
Root mean squared errors (RMSEs) of the dose-dependent, individual-specific caffeine

model predictions (Pi
c) and individual-specific caffeine-free model estimates (Pi

0) of
psychomotor vigilance task (PVT) lapse data for study B subjects (n¼13) after the first
caffeine administration only (at 20 h of sleep loss) as a function of dose. The overall
mean RMSEs are collapsed over the three dosing conditions for each subject. RMSEs of
the caffeine models that performed better than their corresponding caffeine-free
models are in boldface. RMSE units are number of PVT lapses.

Subject Caffeine dose (at 20 h of sleep loss)

100 mg 200 mg 300 mg Overall Mean

Pi
c Pi

0 Pi
c Pi

0 Pi
c Pi

0 Pi
c Pi

0

1 5.82 7.05 5.75 16.77 3.54 15.12 5.04 12.98
2 4.44 6.73 5.18 4.90 4.98 4.24 4.87 5.29
3 12.95 4.50 10.40 25.70 3.24 17.67 8.86 15.96
4 11.84 7.92 5.40 16.30 8.14 20.78 8.46 15.00
5 8.33 14.02 10.53 18.10 9.74 24.15 9.54 18.76
6 6.49 17.87 9.91 14.35 19.45 10.48 11.95 14.23
7 21.22 9.53 21.77 5.59 15.67 8.43 19.55 7.85
8 8.87 13.70 12.75 10.22 6.18 7.27 9.27 10.40
9 13.76 18.43 6.98 14.81 5.57 16.28 8.77 16.51
10 10.90 17.74 13.67 25.21 3.38 18.07 9.32 20.34
11 7.51 9.68 6.75 13.12 6.54 14.87 6.93 12.56
12 6.50 5.56 2.42 10.40 13.61 3.85 7.51 6.60
13 4.06 6.89 5.40 11.32 5.53 13.00 5.00 10.40
Average 9.44 10.74 8.99 14.37 8.12 13.40 8.85 12.84
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Appendix A

Within-study normalization

In study B, each subject's performance under four different
dosing conditions (0, 100, 200, and 300 mg) was measured via a
crossover design experiment, with a 1-mo washout period between
the repeated laboratory visits. We used PVT data of the nine
sessions prior to caffeine administration (referred to as baseline
sessions) from each visit from all subjects to determine whether
there was an order-of-visit effect on performance. Comparisons
between baseline data for the first and last visits using Wilcoxon
paired, two-sided, signed-rank tests (Zar, 1999) indicated that the
performance in each of the nine baseline sessions during the last
visit was significantly worse than those in the first visit (po0.05).
In addition, we observed that the mean baseline performance
impairment (averaged across all subjects and nine sessions)
increased linearly with visit number, with a slope (the order effect)
of �4 lapses/visit. Whenwe estimated the order effect by averaging
the data across the subjects for each of the nine sessions, we
observed a linearly increasing trend with time as well, i.e., the order
effect progressively increased with hours awake. Hence, to correct
for these time-varying order effects for each subject, we first
estimated the effects of the subsequent visits relative to the first
visit using the subject's data in the nine baseline sessions, and then
subtracted the effect for each session of each visit after the first visit.
To this end, we used a generalized additive modeling approach
(Hastie and Tibshirani, 1990) to characterize the baseline perfor-
mance Pi

vðtÞ of subject i at discrete-time index t on visit v as follows:

Pi
vðtÞ ¼ P0ðθi

; tÞþðv�1ÞðηitþγiÞ; ðA:1Þ

where P0(θ i,t) represents the subject's caffeine-free performance at
time awake t on the first visit (which is modeled using the two-
process model of sleep regulation as described in Section 2.3 under
Methods), θ i corresponds to the subject's two-process model para-
meters, and ηi and γi denote the order effect parameters capturing
the linear time-varying effect of the order of visit on performance.
Thus, for each subject, we first used baseline data from the first visit
to fit P0(θ i,t), and then estimated the order effect parameters, ηi and
γi, by fitting Eq. (A.1) to baseline data of the remaining three visits.
Finally, we subtracted (v�1)(ηitþγi) from each subject's PVT data
across all sessions for each visit after the first visit to eliminate the
time-varying effect of the order of visit.

To assess the effectiveness of this normalization procedure, we
separately computed the following two one-factor F-statistics
using repeated-measures analysis of variance (Zar, 1999) both
before and after normalization: (1) the effect of visit Fvisit (¼
between-visit variance/within-visit variance) on baseline data and
(2) the effect of dose Fdose (¼ between-dose group variance/
within-dose group variance) on post-caffeine data. We observed
that Fvisit (3, 36) dramatically reduced from 10.94 (po0.05) to 0.69
(p40.05) due to normalization, reflecting the reduction of the
order-of-visit effect. At the same time, Fdose (3, 36) increased from
7.39 (po0.05) to 13.47 (po0.05), suggesting that the normal-
ization procedure improved the differentiability between the four
different caffeine dose groups.

Between-study normalization

To perform cross-study validation of the caffeine models
between studies A and B, we required that the baseline PVT data
(from the nine sessions prior to caffeine administration) to be
similar in the two studies. However, results from the Wilcoxon
two-sided rank-sum test suggested that there was a significant
(po0.05) difference in the baseline data between the studies.
Therefore, we applied an affine transformation (Hastie et al., 2001)
to the data in study B to ensure that baseline differences between
the two studies were eliminated, while not significantly affecting
the inter-subject variability within study B data. Accordingly, we
used baseline PVT data from the two studies and estimated the
optimal affine transformation parameters (μ and c) by minimizing
the following constrained objective function:

Jðμ; cÞ ¼ ∑
9

t ¼ 1
jmeanff ½PB

mðtÞ;μ; c�g�mean ½PA
mðtÞ�j2þjstdff ½PB

mðtÞ;μ; c�g�std½PB
mðtÞ�j2;

ðA:2Þ

wherePA
m and PB

m denote the measured baseline PVT data from all
subjects in studies A and B, respectively, std denotes the standard
deviation function characterizing the inter-subject variability in
the data, and f (x, μ, c)¼μxþc is the affine transformation
function. Finally, we applied the optimal affine transformation
(μ¼0.77, c¼�1.08) to each subject's PVT data in study B across all
sessions for each of the visits to eliminate the baseline differences
between the two studies.

To assess the effectiveness of the above baseline normal-
ization procedure, we performed Wilcoxon two-sided rank-sum
tests to compare the baseline data in study A and the affine-
transformed data in study B. The results suggested no statistically
significant differences among the baseline data following the
normalization.

Appendix B

Table B.1 shows the caffeine-free model parameters (α, ρ, β, S0,
and ϕ) obtained in studies A and B.

Table B.1
Caffeine-free model (sleep loss only) parameters obtained by fitting Eq. (2) on
population-average psychomotor vigilance task lapse data of placebo subjects in
studies A and B. The caffeine-free model is derived from the two-process model of
sleep regulation.

Study α (lapses) ρ (h�1) β (lapses) S0 ϕ (h)

A 32.12 0.09 14.71 1.63 3.66
B 27.64 0.06 10.18 1.28 4.72
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Appendix C

Figure C.1 shows a comparison of the population-average dose-dependent caffeine model fits and predictions after three repeated
caffeine doses in studies A and B.
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Fig. C.1. Dose-dependent caffeine model fits and cross-study model predictions on population-average psychomotor vigilance task (PVT) lapse data (mean7standard error)
measured after three repeated caffeine dose administrations (at 20, 22, and 24 h of sleep loss – denoted by the thin dotted vertical lines) in studies A and B. Within each
study, the gray dashed-dotted lines represent the caffeine-free model obtained by fitting on PVT data from the placebo group (not shown).
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Appendix D

Figure D.1 shows individual-specific, dose-dependent caffeine model performance predictions Pi
c in Eq. (12) after three repeated

caffeine doses (the same dose of caffeine administered each of the three times) of 100, 200, and 300 mg for three subjects, Subject #1
(top), Subject #2 (middle), and Subject #12 (bottom), in study B. We also compared these predictions with individual-specific caffeine-free
estimates Pi

0 [in Eq. (12)] and population-average caffeine model predictions P
i
c [¼ P0 � giPD in Eq. (11) based on study B data while

excluding data from the i-th subject].
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Fig. D.1. Individual-specific (Pi
c) and population-average (P

i
c) dose-dependent caffeine model predictions of three subjects’ psychomotor vigilance task (PVT) lapse data after

three repeated caffeine doses of 100 (left), 200 (center), and 300 mg (right) administered at 20, 22, and 24 h of sleep loss (denoted by thin dotted vertical lines) in study B.
Each subject's caffeine sensitivity (determined visually) is indicated within parentheses. For each subject, the dashed-dotted lines represent the individual-specific caffeine-
free model fit (Pi

0) on PVT lapse data obtained under placebo administration (not shown).
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Appendix E

Fig. E.1 shows a bar-chart comparison of the average (n¼13)
RMSEs of the four different prediction models for the three
repeated caffeine doses (the same dose of caffeine administered
each of the three times) of 100, 200, and 300 mg in study B. Also
shown is the overall average RMSE for each of the four model
predictions. The asterisks in Fig. E.1 indicate significant (po0.1)
differences based on Wilcoxon paired, two-sided, signed-rank test
comparisons.
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