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ABSTRACT 
 
Recent advancements in technology have resulted in new 
biosensors and information processing capabilities that 
permit on-line, real-time measurement of physiological 
variables. This has, in turn, given rise to the possibility of 
developing soldier-specific, data-driven predictive 
models for assessing physiological status in the 
battlefield. This paper explores how the accuracy of a 
predictive model based on first principles physiology can 
be enhanced by data-driven “black box” techniques of 
modeling and predicting human physiological variables. 
Such hybrid techniques are employed here in the 
prediction of core temperature. Preliminary results show 
that the mean square error of prediction can be reduced 
by up to fifty percent for prediction horizons of up to 30 
minutes. 
 

1. INTRODUCTION 
 
The Warfighter Physiological Status Monitoring 
(WPSM) program seeks to develop a soldier-wearable, 
computer-based system for providing commanders and 
medics with critical physiological status information 
about their warfighters [Hoyt et. al., 2002; Hoyt and 
Friedl, 2004]. The WPSM system has two primary aims: 
the first is to prevent non-battle injuries, such as heat 
stroke and altitude sickness, and the second is to 
optimize casualty management through improved 
casualty detection, diagnostics, and triage. These goals 
require an array of sensors, a personal area network, and 
data management software, as well as a variety of 
decision-support algorithms for monitoring and 
predicting the soldier’s physiologic status. In this paper, 
we focus on the development of algorithms for non-
battlefield injuries and, in particular, on new techniques 
that can be used to enhance the accuracy of predictions 
of important physiological variables. 
 
One of the issues addressed by the WPSM system is the 
vulnerability of warfighters to heat stroke.  There is 
general consensus that monitoring and/or predicting 
heart rate and core temperature is an important part of 
avoiding this preventable non-battle injury. The 

SCENARIO model [Kraning and Gonzalez, 1997], a 
computer simulator developed by the U.S. Army 
Research Institute of Environmental Medicine 
(USARIEM), helps perform this task by predicting core 
temperature, heart rate, and other physiological variables.   
 
Physiological models commonly rely on first-principles 
knowledge about various mechanisms in the human body 
and their associated dynamics. The resulting models may 
be effective in capturing average physiological 
responses, but not necessarily effective for a particular 
individual, leading to inaccurate predictions for that 
individual.  The capacity to “tune” a model to a 
particular individual is particularly important due to the 
well-documented between-subject variability [Berglund 
and Stolwijk, 1978; Xu and Werner, 1997]. Individuals 
with similar anthropomorphic characteristics, subjected 
to the same work load and environmental conditions, 
may yield very different physiological responses.  Inter-
individual variation in physiologic response is 
particularly critical at limiting thresholds of physiologic 
health, such as extreme values of core temperature, 
where small variations can make the difference between 
a suitable recovery and an irreversible pathological 
condition.  A case in point is the approximately 120 heat 
stroke/sun stroke injuries that occur per year and the 
associated $10M/y cost [Sawka et al., 1996; 
http://amsa.army.mil]. The need to represent between-
subject variability can be addressed by developing 
models that utilize historic and real-time data that are 
specific to the individual.   
 
The SCENARIO model, like many other physiological 
models currently in use, relies primarily on knowledge 
provided by fundamental first principles of physics and 
physiology. While the SCENARIO model does 
incorporate parameters as the individual’s weight, height 
and fat percentage, the fidelity of the model could be 
improved by accounting for additional relevant dynamics 
of human physiology. One way of addressing such issues 
and improving model fidelity, is to incorporate data-
driven or “black-box” models into the first-principles 
model creating “hybrid” models. Such black-box models 
have been widely used in system identification and 
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control in industrial processes and have proven to be 
quite effective [Ljung, 1999; Goodwin and Sin, 1984].  
Physiological dynamics hold equal promise in this 
regard. Examples of black-box models that could be used 
in prediction include autoregressive with exogenous 
input (ARX) models, state-space models, and neural 
network models.  
 
In the research reported in this paper, we augment the 
predictions provided by the SCENARIO model with 
predictions from the black-box models mentioned above. 
Such hybrid models are expected to account for gaps in 
understanding of physiological function and between-
subject variability, yielding higher-fidelity predictions 
than either approach, first-principles or data-driven, can 
achieve separately.  
 

2. THE SCENARIO MODEL 
 
As mentioned in the previous section, SCENARIO is a 
computer model that seeks to simulate, using first 
principles, the physiological response of soldiers 
subjected to environmental and operational stressors. The 
model simulates the time course of the thermal state of 
the human body, while considering different 
environmental conditions, clothing ensembles, work 
loads, effects of progressive dehydration, and 
anthropometric characteristics, such as body weight and 
fat, stature, and varied levels of aerobic fitness.  At its 
core, the model relies on a set of macroscopic energy 
conservation equations employing a lump-parameter 
model representation of six adjacent cylindrical 
compartments that simulate the human body.  These are 
embodied by six differential equations that account for 
metabolic heat production, passive and active heat 
exchange between adjacent compartments, and heat loss 
from the skin and the lungs [Kraning and Gonzalez, 
1997].   
 
Although SCENARIO is customizable to an individual, 
model approximations limit prediction fidelity. For 
instance, practical considerations necessitate that some of 
the parameters of the model, such as tissue conductance 
and metabolic rate, be based on group-average values, 
instead of values specific to the individual being 
modeled. Also, since the values of these and other model 
parameters are based on experimental data, inherent 
observation error and limited sample size may lead to 
discrepancies which, compounded, contribute to model 
inaccuracy. Furthermore, all of the dynamics of human 
physiology may not have been captured by the 
SCENARIO model. In order to help address these issues, 
we propose the incorporation of data-driven, black-box 
models into the first-principles-based SCENARIO model 
in the construction of a hybrid modeling approach.  
 

3. THE HYBRID APPROACH TO 
MODELING 

 
Historically, parametric models derived from prior 
knowledge in the form of empirical correlations, known 
mathematical equations, or fundamental first principles, 
such as macroscopic conservation of mass and energy, 
have been the method of choice in the development of 
physiologic models. While widely applied, the 
parametric modeling approach requires comprehensive 
prior knowledge of the underlying phenomenon being 
modeled in order to produce accurate predictions. The 
required accuracy levels often depend of the particular 
application.  Because complete understanding of the 
underlying phenomenon being modeled is rarely 
possible, parametric models, such as SCENARIO, often 
fail to make accurate predictions across the entire 
spectrum of the model operation.  Also, while the model 
simulates responses occurring during gradual changes of 
cardiac frequency and core temperature, it needs to 
respond more accurately to rapid changes in metabolic 
rates accompanying changes in physical activity and 
environmental conditions. 
 
On the other extreme, nonparametric models have been 
proposed to model complex processes when exact 
analytical equations are unavailable or difficult to 
develop [Goodwin and Sin, 1984].  These models are 
derived from process data, where the functional form of 
the model is conformed to the specifics of the particular 
process only after the presentation of the data.  There are 
a wide variety of such models ranging from simple ARX 
models to more complex and nonlinear neural network 
models. The ARX model [Ljung, 1999] used in our 
investigation is of the general form 
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where  y(t) represents the output of a model at time t, d 
corresponds to the prediction horizon, u(t) represents the 
input at time t, n(t) denotes a white Gaussian noise input, 
and the regression vector  (t) consists of na  past outputs 
and nb past inputs. Also,   denotes a vector of (na+nb) 
parameter coefficients corresponding to these past 
outputs and inputs.  
 
Figure 1 illustrates the most commonly used artificial 
neural network, the multi-layer perceptron. In the context 
of our investigation, this neural network would have only 
a single output (core temperature) and as many inputs as 
there are elements of the corresponding regression vector 
(t) in Equation (1). Thus, the general form may be given 
as 
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where f is the nonlinear function representing the neural 
network. Note that in this feed-forward configuration, the 
output at time t is used as an input to predict the output at 
the next time step, as illustrated by the dashed line in 
Figure 1. 
 

 
 
Figure 1: A pictorial representation of a multi-layer 
feed-forward artificial neural network. 
 
These data-driven models are nevertheless limited to 
making predictions within the boundaries of the training 
data. Their ability to extrapolate beyond those limits is 
unpredictable and their usefulness is extremely 
dependent on the quantity and quality of the training 
data, which are often difficult to obtain and validate 
[Reifman, 2004].  Additionally, as the time horizon of 
prediction increases for these models, so does the 
deterioration in the quality of predictions provided by the 
models. This is because the feedback that could be used 
to correct for errors in the predictions is not employed 
until the actual measurement corresponding to that 
prediction has been made. Thus, for predictions 
involving large time horizons, predictions based on first-
principle models may become relatively more reliable.  
 
More recently, hybrid approaches that combine first- 
principles models and the data-driven models mentioned 
above have been proposed as alternative, more flexible, 
and perhaps superior modeling paradigms than more 
traditional parametric and nonparametric approaches 
[Vilim et al., 2001; Wilson and Zorzetto, 1997].  The 
promise of hybrid approaches lies in their potential to use 
the best of both approaches while avoiding the 
limitations of each approach used separately.  Data- 
driven models complement missing first-principles 
knowledge with information extracted directly from the 
process data, while first-principles-based models 

compartmentalize and reduce the role of data-driven 
models to specific functionalities, significantly reducing 
the training data requirements and improving model 
generalization and extrapolation.   
 
The hybrid approach, when implemented in the context 
of core temperature prediction involving the SCENARIO 
model, allows us to employ prior knowledge about the 
“human physiological process” to the maximum extent 
possible, and complements the missing knowledge with 
information extracted from core temperature 
measurements provided by the array of WPSM 
biosensors. 
 
The hybrid approach may be implemented under two 
primary architectures: serial and parallel, as shown in 
Figures 2a and 2b, respectively. The serial approach uses 
the data-driven model to estimate the parameters of the 
SCENARIO model, which are then used by SCENARIO 
to make a prediction of core temperature. The parallel 
approach, on the other hand, uses the data-driven model 
to improve the predictions provided by the SCENARIO 
model. In the following sections we limit our discussions 
to the latter. 
 

 
 
Figure 2: Two hybrid approaches that combine first-
principles with data-driven (black-box) models; (a) serial 
approach and (b) parallel approach.  

 
4. VALIDATION AND RESULTS 

 
In this section, we present the results of the 
implementation of variants of the hybrid model approach 
to field data using two data-driven models. The particular 
models implemented here involve: (1) the SCENARIO 
model in parallel with an ARX model and (2) the 
SCENARIO model in parallel with a neural network 
model.  
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Seventeen variables corresponding to anthropomorphic 
and environmental conditions are used as inputs to 
SCENARIO. These inputs are then processed into 6 
variables, corresponding to the six differential equations 
of the model. It is these 6 variables rather than the 17 
inputs that are fed into the black-box model. 
 
Both black-box models, the ARX and the neural 
network, are employed to estimate the offset between the 
SCENARIO predictions and the actual core temperature 
measurements of specific subjects. Accordingly, the 
resulting prediction of core body temperature is the sum 
of the predictions provided by the SCENARIO model 
and that provided by the ARX or the neural network 
model (Figure 2b). 
 
These models are developed and tested using field data 
collected from Marines over four days of field training. 
Each day involved a 3-mile morning march to a shooting 
range, followed by day-long exercises and rotations 
within firing stations, and a march back via the same 
route in the evening. The core temperature for each 
subject was measured through a telemetry pill ingested at 
the beginning of every day. 
 
The data from the first day are used to develop (or train) 
an initial predictive model for each specific individual; 
that is, to estimate the (na+nb) parameter coefficients in 
Equation (1) and the weights of the neural network in 
Equation (2). Thereafter, new data from the subsequent 
three days (which were not previously used to develop 
the models) are used to refine predictions about future 
core body temperature in those days. In this paper, we 
present the results for only one of the subjects, during 
two of the days. 
 
Figure 3 shows the performance of the ARX hybrid 
model for one subject over the first two days.  The solid 
(blue) line shows the measured core temperature, 
sampled once a minute. The thin dashed (green) line 
shows the predictions provided by the original 
SCENARIO model while the thick dashed (red) line 
shows the hybrid model predictions. These predictions 
are obtained with a time horizon set to 20 minutes. In 
other words, for each minute, the actual prediction for 
that minute was computed 20 minutes earlier. The figure 
also shows the mean square error (MSE) of the 
prediction for both the hybrid model and the original 
SCENARIO model. The MSE is defined here as 


i

ie
N

MSE 21
  (3) 

where ei   is the difference between the predicted and the 
measured temperature at each time instance (i.e., one 
minute) and N is the total number of time instances.  As 
can be seen from the figure, the addition of the black-box 
model to SCENARIO helps improve the accuracy of the 

20-minute-ahead prediction during the second day by 
50%.   
 
Figure 4 shows the predictions for a 30-minute time 
horizon. The SCENARIO MSE is unchanged, as this 
model is based on an open-loop approach that does not 
rely on feedback from previous predictions or 
measurements. The hybrid model MSE, however, 
increases with the time horizon. This is due to the 
deterioration of the black-box part of the hybrid model as 
a function of the prediction horizon. In addition, an 
increase in the time horizon also causes an increased 
phase shift of the hybrid model prediction. This 
underscores the importance of the first-principles part of 
the model as the time horizon increases. An analysis of 
the precise relation between the prediction time horizon 
and the resulting phase shift is currently underway. 
 
The linear ARX model described above is not capable of 
capturing any nonlinear dynamics not incorporated in 
SCENARIO.  Neural networks have been shown to be a 
useful tool in such cases. Figure 5 shows the results for a 
20-minute horizon prediction where a neural network is 
used as the black-box part of the hybrid model. 
Surprisingly, while still smaller than the original 
SCENARIO model, the MSE obtained with the neural 
network model is larger than that obtained with the ARX 
model. Additionally, note the increasing number of 
oscillations in the prediction. While investigations 
continue, this may point to the possibility that nonlinear 
dynamics, if present, are insignificant, and that linear 
models are sufficient in dealing with them. Similar 
results to those reported here were found when the 
methods described in this paper were applied to other 
subjects in the study and during the other two days for 
which data were available. 
 

CONCLUSIONS AND FUTURE WORK 
 
The work presented in this paper shows that a hybrid 
approach (incorporating both first-principle and black-
box models), coupled with closed-loop feedback of 
prediction errors, improves the prediction accuracy of 
core temperature for individual subjects. These 
improvements may reduce the mean prediction error by 
20% to 50% for prediction horizons varying from 10 to 
30 minutes. This has promising implications for many 
other applications in the arena of physiological modeling 
and, in particular, future developments of predictive 
models relevant to the Warfighter Physiological Status 
Monitoring program. 
 
While the results shown are promising, there still remain 
many issues to be addressed. Chiefly, the serial hybrid 
approach to modeling remains to be explored.  In this 
case, a judicious application of the black-box model in 
improving the estimates of the parameters used in the 
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 Figure 3: 20-minute ahead prediction of core temperature using an auxiliary ARX model in parallel with SCENARIO. 
 
SCENARIO model would be implemented. Special care 
must be taken, however, not to mask the insight provided 
by the SCENARIO model. 
 
Another important issue that needs to be addressed is 
whether a hybrid model previously developed for one 
subject may be used as an initial model for a different 
subject. If so, this would be extremely useful for 
practical applications, since a subject’s data may not 
always be available for training the model prior to 
implementation. 

The issue of robustness is critical in any modeling 
application. Therefore, in this context, it is important to 
have some guarantees of performance. For example, it 
would be useful to still be able to make a prediction if 
there is a slight disruption that prevents the measurement 
of one or more of the variables used in the models.  
 
As is evident from the results presented in this paper, the 
application of the hybrid approach deteriorates as the 
prediction horizon increases. In order for decisions to be 
made on the basis of these predictions, it is critical that 
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 Figure 4: 30-minute ahead prediction of core temperature using an auxiliary ARX model in parallel with SCENARIO. 
 
these predictions be reliable. Hence, it would be in order 
to quantitatively assess the reliability of the model 
predictions through estimation of statistical error bounds. 
One approach that will be pursued in the near future is to 
apply the statistical bootstrap method [Efrom and 
Tibshirani, 1993]. 
 
 While the measurement of body temperature in the study 
in this paper involved ingestible pill telemetry, future 
studies will also investigate the effectiveness of using 
variables such as skin temperature, as alternatives to core 

temperature, which can be measured in a non-invasive 
fashion, to monitor and predict heat strain. 
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Figure 5: 20-minute ahead prediction of core temperature using an auxiliary neural network model in parallel with 
SCENARIO. 
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