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Computational analysis identifies putative 
prognostic biomarkers of pathological scarring 
in skin wounds
Sridevi Nagaraja1 , Lin Chen2 , Luisa A. DiPietro2 , Jaques Reifman1*  and Alexander Y. Mitrophanov1 

Abstract 

Background: Pathological scarring in wounds is a prevalent clinical outcome with limited prognostic options. The 
objective of this study was to investigate whether cellular signaling proteins could be used as prognostic biomarkers 
of pathological scarring in traumatic skin wounds.

Methods: We used our previously developed and validated computational model of injury-initiated wound healing 
to simulate the time courses for platelets, 6 cell types, and 21 proteins involved in the inflammatory and prolifera-
tive phases of wound healing. Next, we analysed thousands of simulated wound-healing scenarios to identify those 
that resulted in pathological (i.e., excessive) scarring. Then, we identified candidate proteins that were elevated (or 
decreased) at the early stages of wound healing in those simulations and could therefore serve as predictive biomark-
ers of pathological scarring outcomes. Finally, we performed logistic regression analysis and calculated the area under 
the receiver operating characteristic curve to quantitatively assess the predictive accuracy of the model-identified 
putative biomarkers.

Results: We identified three proteins (interleukin-10, tissue inhibitor of matrix metalloproteinase-1, and fibronectin) 
whose levels were elevated in pathological scars as early as 2 weeks post-wounding and could predict a pathological 
scarring outcome occurring 40 days after wounding with 80% accuracy.

Conclusion: Our method for predicting putative prognostic wound-outcome biomarkers may serve as an effective 
means to guide the identification of proteins predictive of pathological scarring.
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Background
Cutaneous hypertrophic scars (HTSs) are a common 
form of pathological scarring that occurs after traumatic 
skin injuries and surgical procedures with 17–67% inci-
dence rate [1–3]. The resultant disfigurement, pruritus, 
pain, contractures, and morbidity are often very det-
rimental to a patient’s well-being. The pathogenesis of 
HTSs involves both cellular and extracellular matrix 
(ECM) components of the skin, which are regulated by a 

wide variety of proteins released at the wound site during 
the inflammatory, proliferative, and remodeling phases of 
wound healing [2, 4].

Recent experimental studies have provided a great 
deal of information about the pathogenesis of HTSs. 
Genomic, protein, and histologic differences have been 
identified and compared between normotrophic scars 
and HTSs [5–7]. HTSs are characterized by excess col-
lagen and increased angiogenesis, as well as by the 
increased presence of proliferative cells and the proteins 
they release, such as fibronectin, transforming growth 
factor-β (TGF-β), and matrix metalloproteinase-9 (MMP-
9) [4–6, 8, 9]. Although these characteristics are useful 
in understanding the pathogenesis of HTSs, informative 
prognostic biomarkers that can reliably predict the risk of 
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pathological scar development are few [4]. Existing pre-
dictive indicators of HTSs include both empirical factors 
(e.g., appearance, size, and closure rate of a wound) and 
serum biomarkers [e.g., serum concentrations of TGF-β, 
decorin, interleukin (IL)-6, IL-10, and IL-β] [4, 10, 11]. 
Such predictors are rarely used clinically however, due to 
the lack of readily available laboratory tests to measure 
those proteins. The identification of reliable and readily 
measurable prognostic biomarkers of pathological scar-
ring would allow for the proactive treatment of patients 
who are likely to develop HTSs, greatly improving clinical 
care. Several practical limitations have hindered the iden-
tification of prognostic biomarkers for HTS formation. 
Clinical studies of pathological scarring conditions, such 
as HTSs and keloids, often employ small sample sizes and 
are most frequently conducted after the onset of patho-
logical scarring. Given these limitations, one comple-
mentary approach that allows systematic identification of 
promising biomarkers of pathological wound scarring is 
computational modeling.

We have previously developed a computational model 
of wound healing whose parameters were derived from 
in  vitro cell culture experiments and validated using 
in vivo data from a variety of animal wound models, as 
well as from human wounds [12, 13]. Here, we use that 
model to perform predictive analysis of HTS formation. 
The contributions of the current study are threefold. 
First, we developed a computational approach to repre-
sent natural variability in normal healing and pathologi-
cal scarring. Second, we developed a strategy for putative 
HTS biomarker discovery using model-simulated wound-
healing scenarios. This strategy was validated using avail-
able in  vivo data on wound healing in human subjects. 
Third, we performed a computational study to identify 
promising prognostic protein biomarkers for HTSs. Our 
analysis suggested that IL-10, tissue inhibitor of matrix 
metalloproteinase (TIMP)-1, and fibronectin levels on 
days 14 and 21 post-wounding could predict, with accu-
racies of 80 and 86%, respectively, a pathological scarring 
outcome occurring 40  days after wounding. The results 
demonstrate the power of computational modeling in 
identifying candidate prognostic markers for HTSs and 
other wound healing pathologies.

Methods
Computational kinetic model of wound healing
We previously developed a computational kinetic model 
that simulated the concentration time courses for plate-
lets, 6 cell types and 21 wound proteins (including three 
forms of collagen) over 40 days during an injury-initiated 
wound-healing response (Fig. 1) [12, 13]. A detailed list 
of the modeled cell types and proteins is provided in the 

Additional file 1. This kinetic model is system of 28 differ-
ential equations with 108 parameters. The model param-
eters (i.e., protein production and degradation rates, cell 
chemotaxis rates, etc.) were derived from in  vitro cell 
culture data on different mammalian species including 
humans. In those studies, we validated the model using 
in  vivo wound data (that had not been used in model 
development) from mice, pigs, rats, and humans [12, 13]. 
The default model parameter set corresponded to a nor-
mal wound-healing scenario (i.e., a wound that healed in 
a timely manner without excessive scarring). The model 
parameter values, parameter descriptions, model equa-
tions, and validation data are detailed in our previous 
work [12].

To this previously developed and validated model, we 
applied the newly developed computational strategies 
described below. In one of our analyses, we simulated a 
specific pathological-scarring scenario by modifying the 
values of two parameters in the default parameter set: we 
decreased by twofold the fibroblast apoptosis rate and 
increased by 1.5-fold the rate of collagen production by 
fibroblasts. We chose to modify these specific parameters 
because we had previously identified the biological pro-
cesses represented by them as likely mechanistic factors 
driving pathological scarring in wounds [12].

Generation of 120,000 new wound‑healing simulations
The rates of biological processes involved in wound heal-
ing are expected to naturally vary among different mam-
malian species and individual animals, and also to vary 
due to differences in wound area, depth, and location. To 
reflect such natural variation in the molecular and cel-
lular processes involved in wound healing, we simulated 
120,000 distinct wound-healing scenarios, using modi-
fied model-parameter values. The corresponding 120,000 
parameter sets were generated by randomly selecting 
the values for the 108 model parameters from intervals 
spanning the ranges between one-half and double the 
default parameter values. Our decision to sample the 
model parameter values from within a 0.5–2-fold range 
of their default values was based on the detected variabil-
ity in the time courses of inflammatory/proliferative cells 
and cytokines in the wounds of wild-type C57BL/6J mice 
[12]. We carried out all computations in the software 
suite MATLAB R2015b (MathWorks, Natick, MA), and 
solved the model equations by using the MATLAB solver 
DDE23 with default tolerance levels.

Classification of scarring outcomes in wound‑healing 
simulations
For each of the 120,000 simulations, we calculated the 
fold changes in the model variables representing collagen 
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and fibroblast concentrations with respect to their con-
centrations in the simulation with the default param-
eter values. The fold changes were calculated at the final 
simulation time point of 40 days after wounding, which 
we assumed to be representative of the time required 

for a HTS to develop (i.e.,  ~  6  weeks [4]). From these 
fold changes, we classified the 120,000 simulations into 
three groups (Fig.  1a). Simulations for which both col-
lagen and fibroblast fold changes did not exceed 1 were 
classified as “normal healing” (i.e., healing resulting in a 

Fig. 1 Computational strategy. a First, we used our computational kinetic model to simulate 120,000 distinct wound-healing scenarios. The 
output of each simulation comprised the time courses for the 28 model variables at 40 time points after wounding (each simulated time point 
represented the level of a variable on each of the 40 days post-wounding). In addition to the 120,000 simulations, we used the default parameter 
set to simulate a normal wound healing (i.e., normal healing) scenario. Second, we calculated fold changes (on day 40) of total collagen and 
fibroblast concentrations in each of the 120,000 simulations with respect to their corresponding values in the normal-healing simulation. Based 
on these fold changes, we classified the 120,000 simulations as “normal” (fold change ≤ 1), “mild pathological” (5 ≤ fold change ≤ 10), or “severe 
pathological” (fold change > 10) scarring simulations. Finally, we analysed the concentration distributions (or histograms) of 18 modeled wound 
proteins (excluding collagen) in the normal-healing and pathological-scarring simulations to determine the diagnostic and prognostic biomarkers 
of pathological scarring (see the “Methods” section for further details). b The pie chart shows the number of simulations that fell into each of the 
three categories of wound healing (i.e., normal, mild pathological, or severe pathological) after implementation of the classification criteria
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non-pathological scar). Those for which the fold changes 
were simultaneously ≥ 5 and ≤ 10 were classified as “mild 
pathological scarring.” Finally, simulations for which the 
fold changes exceeded 10 were classified as “severe path-
ological scarring.” Our choice of the cutoff values 5 and 
10 for classifying a wound-healing outcome as “mild” or 
“severe” pathological scarring was based on published 
reports of experimentally measured increases in colla-
gen synthesis and deposition of up to fivefold in HTSs 
and up to 20-fold in keloids [14–16]. If the fold changes 
did not satisfy the fold-change cutoffs for any of the three 
classification groups (i.e., fold changes > 1 and < 5), the 
wound-healing scenarios represented by those simula-
tions could not be clearly classified as normal healing or 
as pathological scarring. The results of such simulations 
were excluded from the analysis of protein concentration 
distributions (Fig. 1a). While this step resulted in a large 
group of simulations being excluded from the analysis, 
it reduced the ambiguity in prognostic biomarker iden-
tification by considering only the simulations that were 
most likely to represent normal-healing or pathological-
scarring wounds.

Analysis of protein concentration distributions 
in normal‑healing and pathological‑scarring simulations
We generated protein concentration distribution histo-
grams using the MATLAB function HIST with 50 bins 
partitioning the interval between the minimal and maxi-
mal concentration values for a protein in a particular 
group of simulations (i.e., normal healing, mild patho-
logical scarring, or severe pathological scarring). These 
histograms were visualized as concentration distribution 
curves (Figs. 3 and 4). The percentage of the simulations 
for each curve was calculated by dividing the number 
of simulations in which a given protein’s concentration 
fell within the concentration range of a particular bin by 
the total number of simulations in that group. For each 
protein in our model (excluding collagen), we analysed 
the area of overlap between its concentration distribu-
tion generated from the normal-healing simulations 
and the corresponding distributions generated from the 
mild and moderate pathological-scarring simulations. A 
small overlap area indicates that the protein is consist-
ently elevated (or decreased) in pathological-scarring 
simulations relative to normal-healing simulations, and 
was therefore more likely to be associated with a patho-
logical outcome than proteins with larger distribution 
overlap areas (Fig. 1a). Concentration distributions have 
previously been utilized for biomarker identification, 
extending the prevalent practice based on fold-change 
analysis of gene/protein expression [17–19]. To quantify 
the area of overlap between the concentration distribu-
tions, we calculated the Bhattacharyya coefficient as 

previously described [19]. The value of this coefficient 
varies between 0 and 1, which represent 0 and 100% 
overlap, respectively. Proteins whose concentration dis-
tributions were characterized by little overlap between 
the normal-healing and pathological-scarring simula-
tions on day 40 (i.e., upon complete HTS development) 
were determined to be diagnostic biomarkers of patho-
logical scarring. In contrast, proteins whose concentra-
tion distributions were characterized by little overlaps 
between the normal-healing and pathological-scarring 
simulations on days 7, 14, and 21 post-wounding were 
determined to be putative prognostic biomarkers. When 
experimental data for the model-identified diagnostic 
biomarkers were available in the literature [14, 20–24], 
we compared the protein fold changes in pathological 
scars in humans (i.e., hypertrophic scars and keloids) 
derived from the experimental data using with the corre-
sponding fold changes calculated from the pathological-
scarring simulation described in the first subsection of 
“Methods” section.

Analysis of predictive accuracy using logistic regression
We used logistic regression analysis to quantify the pre-
dictive accuracy of the prognostic biomarkers identi-
fied in our protein concentration distribution analysis 
(described above). For the logistic regression analysis, we 
used all of the 120,000 simulations and divided them into 
two groups: “normal healing” and “pathological scarring.” 
The simulations for which the fold change in the colla-
gen level at the final simulation time point (i.e., day 40) 
exceeded 10 were classified as “pathological scarring,” 
and the remaining simulations were classified as “normal 
healing.” Next, the binary wound outcome (i.e., “normal” 
or “pathological”) of a simulation, along with the levels 
of the model-identified prognostic biomarkers at days 7, 
14, and 21 in those simulations, were used as inputs to 
a logistic regression model (Fig.  2). The logistic regres-
sion model then yielded receiver operating characteristic 
(ROC) curves, which were used to quantify the predictive 
accuracy of the model-identified biomarkers (described 
in detail in the Additional file 1). Finally, using the logistic 
regression model that demonstrated the highest predic-
tive accuracy, we performed a tenfold cross-validation 
analysis to estimate that model’s performance on an inde-
pendent data set [25].

Results
Computational model identifies proteins elevated 
in pathological scars in humans
To identify biomarkers of HTSs, we first established 
criteria by which each of the wound-healing simula-
tions could be classified as resulting in either normally 
healing or pathological scar formation. The pie chart in 
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Fig. 1b shows the number of simulations falling into each 
group after the classification. To validate our biomarker 
identification methodology, we identified those pro-
teins that were elevated (or decreased) in pathological-
scarring simulations (both mild and severe) compared 
to normal healing simulations, and could therefore be 
regarded as diagnostic biomarkers for the condition. We 
found that six proteins—IL-10, TIMP-1, IL-6, TGF-β, 
chemokine CXCL8, and fibronectin—were characterized 
by relatively little overlap between their concentration 
distributions for normal-healing simulations and the cor-
responding distributions for mild pathological-scarring 
simulations and severe pathological-scarring simulations 
on day 40 (Fig. 3a–f).

To further assess the potential power of identify-
ing diagnostic biomarkers using computational meth-
ods, we reviewed the existing literature to obtain 

the experimental measurements of TIMP-1, IL-10, 
fibronectin, and TGF-β in human pathological scars 
versus normally-healed wounds. The fold changes 
reported in human wounds were compared with the 
corresponding fold changes calculated from our simu-
lations for normal-healing and pathological-scarring 
outcomes (Fig. 3g). The fold changes seen in our simu-
lations showed agreement with the human experimen-
tal data. Differences in the experimentally obtained and 
model-simulated fold changes ranged from 6 to 60%), 
with 4 of the 6 factors having differences of less than 
20% (Fig. 3g). The original data from published experi-
mental studies using human scar tissue, including 
details about the protocols used for protein level meas-
urement and the time-points at which the measure-
ment were performed, are provided in Additional file 2.

Fig. 2 Logistic regression analysis. We provided the classification (i.e., “normal” or “pathological”) and the normalized concentrations of the 
model-identified prognostic biomarkers from the 120,000 simulations as inputs to logistic regression models. The models yielded logistic regression 
coefficients for each model-identified biomarker and the probability of a given simulation being “pathological” based on one, two, or three 
biomarkers as predictors. We used the probabilities resulting from the logistic regression models to derive the ROC curves (see Additional file 1 for 
further details)
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Putative prognostic biomarkers of pathological scarring
Having identified diagnostic proteins with high levels in 
late stage scars, we next sought to identify proteins that 
may serve as prognostic biomarkers of pathological scar-
ring. In this analysis, we looked for proteins whose con-
centrations at early time points in the simulations (days 7, 
14, and 21 post-wounding) were highly predictive of the 
scarring outcome (i.e., normal or pathological scarring) 

at the end of those simulations (i.e., day 40). We utilized 
the simulation data to identify proteins whose concen-
tration distributions showed minimal overlap between 
simulations that resulted in normal-healing and those 
resulting in mild or severe pathological-scarring (Fig. 4). 
The analysis demonstrated that IL-10 (Fig. 4a–c), TIMP-1 
(Fig.  4d–f), and fibronectin (Fig.  4g–i) were character-
ized by small overlap areas between normal-healing and 

Fig. 3 Diagnostic biomarkers of pathological scarring. Concentration distributions of a IL-10, b fibronectin, c TIMP-1, d CXCL8, e TGF-β, and f 
IL-6 in normal-healing simulations (solid green lines), mild pathological-scarring simulations (dotted pink lines), and severe pathological-scarring 
simulations (dashed pink lines) at the final simulated time point (i.e., day 40). Brackets (x-axis) designate concentrations. y-axis represents the 
percentage of simulations for each curve (described in “Methods” section). g Solid bars represent the fold changes in protein levels in human scar 
tissue calculated from published experimental data available in the literature. A fold change was calculated as the level of a protein measured 
in the material derived from pathological scar tissue divided by its corresponding level measured in the material derived from scar tissue under 
normal-healing conditions. The assay used to measure the level of a particular protein, as well as the time at which the measurement was 
performed, varied between different experimental studies. The data on TGF-β and TIMP-1 were taken from Refs. [21, 22], respectively. The data on 
IL-10 were taken from two separate studies: Ref. [20] [IL-10 (1)] and Ref. [23] [IL-10 (2)]. The data on fibronectin were also taken from two separate 
studies: Ref. [14] [Fibronectin (1)] and Ref. [24] [Fibronectin (2)]. Open bars represent the corresponding model-simulated fold change values. We 
have not found any published experimental data on the levels of CXCL8 and IL-6 in pathological scars
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pathological-scarring outcomes on days 14 and 21. This 
indicates that, as early as days 14 and 21, levels of IL-10, 
TIMP-1, and fibronectin may be predictive of a patholog-
ical-scarring outcome.

At the earliest of the three examined time points post-
wounding (i.e., day 7), there was considerable overlap 
between the concentration distributions for the normal-
healing and pathological-scarring simulations for IL-10, 

TIMP-1, and fibronectin (Fig.  4a, d, g). Thus, none of 
these proteins were predictive of the scarring outcome 
on day 7 post-wounding. On day 14, however, the area of 
overlap between the concentration distributions for each 
of these proteins in the normal-healing and pathological-
scarring simulations was ~ 14–23% smaller than on day 7 
(Fig. 4b, e, h). The overlap area for each of these proteins 
was the smallest on day 21 (~ 30–40% smaller than the 

Fig. 4 Putative prognostic biomarkers of pathological scarring. Concentration distributions of a–c IL-10, d–f TIMP-1, and g–i fibronectin at 
simulated times representing days 7, 14, and 21 post-wounding. Brackets (x-axis) designate concentrations. y-axis represents the percentage 
of simulations for each curve (described in “Methods” section). Solid green lines show the concentration distributions for the normal-healing 
simulations, dotted pink lines show the concentration distributions for the mild pathological-scarring simulations, and dashed pink lines show the 
concentration distributions for the severe pathological-scarring simulations
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corresponding overlap areas on day 7) (Fig. 4c, f, i). This 
suggests that IL-10, fibronectin, or TIMP-1 levels were 
most likely to successfully predict a pathological scarring 
outcome at or later than week 3 post-wounding.

Among IL-10, TIMP-1, and fibronectin, fibronectin 
was characterized by the smallest concentration distri-
bution overlap between the normal-healing and patho-
logical-scarring simulations on both days 14 and 21. On 
day 14, the fibronectin distribution overlap area was 14 
and 5% smaller than the corresponding areas for IL-10 
and TIMP-1, respectively; on day 21, the fibronectin dis-
tribution overlap area was 8 and 1.5% smaller than the 
corresponding areas for IL-10 and TIMP-1, respectively 
(Fig. 4h, i). The corresponding overlap areas for IL-10 and 
TIMP-1 were comparable at both 14 and 21 days. Thus, 
our distribution overlap analysis showed that IL-10, 
TIMP-1, and fibronectin are putative prognostic bio-
markers of pathological scarring in wounds.

Predictive accuracy of the putative prognostic biomarkers
We next sought to quantitatively assess the predictive 
accuracy of the IL-10, TIMP-1, and fibronectin in two 
instances: (1) when only one protein was used to predict 
a pathological-scarring outcome or (2) when two or three 
protein levels were used together to predict the patho-
logical-scarring outcome. We built 14 logistic regression 
models that used single protein concentrations, or com-
binations thereof, as predictors (seven regression mod-
els for day 14 post-wounding and another seven for day 
21), and derived a ROC curve for each model (Fig. 5; see 
Additional file 1 for further details). The regression coef-
ficients, odds ratios, and ROC AUCs for these logistic 
regression models are listed in Additional file 1: Table S1. 
Among the six models that used the concentration of 
only one protein as a predictor, the model utilizing the 
fibronectin concentration on day 21 as a predictor dem-
onstrated the highest predictive accuracy (ROC AUC: 
0.86) (Fig. 5c). Overall, the model that used the concen-
trations of IL-10, TIMP-1, and fibronectin on day 21 as 
predictors showed the highest accuracy (ROC AUC: 
0.89) (Fig. 5c).

We performed DeLong’s test to determine if any one 
of the ROC AUCs was significantly greater than the 
rest. The ROC AUCs for the seven models that used the 
day-14 biomarker concentrations were not significantly 
different from one another (Fig.  5a). This result implies 
that using the day-14 concentrations of any of the three 
model-identified biomarker proteins as predictors indi-
vidually or in combination with each other could predict 
a pathological-scarring outcome with similar success. In 
contrast, among the seven models that used the day-21 
biomarker concentrations, the ROC AUC for the model 
that used IL-10, TIMP-1, and fibronectin as predictors 

was significantly greater than the ROC AUCs for mod-
els that used only one protein as a predictor (Fig.  5c). 
However, it did not differ significantly from the ROC 
AUCs of the models that used two proteins as predictors 
(Fig.  5c). To validate our assessment of predictive accu-
racy by using an independent data set (i.e., data that were 
not used to build the logistic regression models), we per-
formed a tenfold cross-validation for the logistic regres-
sion models that used all three biomarkers (i.e., the IL-10, 
TIMP-1, and fibronectin concentrations) on either day 
14 or 21 as predictors. The ROC AUCs derived from this 
analysis for days 14 and 21 equaled 0.80 and 0.86, respec-
tively (Fig. 5b, d). Together, the data suggest that devel-
opment of highly accurate predictive biomarkers for scar 
formation may involve a panel of markers rather than a 
single factor.

Discussion
There is a pressing need for prognostic biomarkers to 
objectively predict whether a traumatic or surgical skin 
injury will result in excessive scarring [4, 26]. Few molec-
ular markers have been validated and, to our knowledge, 
none are in active clinical use [10, 11, 27]. The identifi-
cation of prognostic biomarkers for scar formation in 
humans is challenging, primarily because of the need 
for large scale prospective analysis of human samples. 
In the work described here, we demonstrate that com-
putational modeling may be used to effectively predict 
prognostic markers. Markers identified by this method 
could provide an excellent starting point for validation 
in small-scale human studies. Our results suggested that 
the concentrations of IL-10, TIMP-1, and fibronectin in 
the wound at early time points may serve as prognostic 
biomarkers for HTSs. Logistic regression analysis showed 
that the levels of these proteins as early as 14 days post-
wounding can indicate the risk of pathological scarring 
with an accuracy of ~ 80%, with the accuracy increasing 
to 86% when the markers are assessed at 21  days post-
wounding. In particular, the accuracy of the regression 
model that used day-21 concentrations of all three pro-
teins as predictors was significantly higher than that of 
the other regression models.

The findings described in this study demonstrate that 
our model can effectively identify diagnostic markers of 
HTSs. Diagnostic protein biomarkers (e.g., fibronectin 
and α-smooth muscle actin) can assist in differentiat-
ing pathological-scarring conditions of the skin (e.g., 
HTSs vs. keloids) [21, 28]. Moreover, they can provide 
insights into the molecular mechanisms of pathologi-
cal scarring. In the clinic, pathological scars are typically 
characterized by visibly distinguishable features, such 
as raised skin, rigidity, redness, and morbidity [3–5, 9]. 
Therefore, their diagnosis typically does not rely on the 
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use of protein biomarkers. In contrast, the prognosis of 
traumatic skin wounds would be greatly improved by the 
availability of clinically reliable prognostic biomarkers. 
The relative unpredictability of wound scarring outcomes 
strengthens the potential clinical usefulness of reliable 
prognostic biomarkers. While large-scale protein meas-
urements are constrained by the availability of wound 
fluid or tissue, our computational modeling approaches 
can assist researchers in systematically screening and 

selecting putative biomarkers of pathological scarring 
[26]. Notably, computational analyses have been success-
fully used for such purposes for other wound pathologies. 
For example, the potential utility of IL-6 as an indicator 
of chronic inflammation, suggested by computational 
modeling efforts [13, 29], was independently confirmed 
in clinical and experimental studies [30, 31].

The identification and use of prognostic biomark-
ers of wound-healing outcomes is further complicated 

Fig. 5 Receiver operating characteristic (ROC) curves. a ROC curves derived from logistic regression models, using day-14 concentrations of IL-10 
alone (pink line, AUC: 0.77, 95% CI [0.767, 0.777]); TIMP-1 alone (cyan line, AUC: 0.79, 95% CI [0.784, 0.795]); fibronectin alone (green line, AUC: 0.80, 
95% CI [0.794, 0.806]); TIMP-1 and IL-10 (red line, AUC: 0.81, 95% CI [0.806, 0.816]); fibronectin and TIMP-1 (brown line, AUC: 0.81, 95% CI [0.807, 
0.818]), fibronectin and IL-10 (blue line, AUC: 0.82, 95% CI [0.811, 0.821]); and fibronectin, TIMP-1, and IL-10 (black line, AUC: 0.82, 95% CI [0.818, 
0.829]). b ROC curve for tenfold cross validation performed by using day-14 concentrations of fibronectin, TIMP-1, and IL-10 as predictors (AUC: 0.80, 
95% CI [0.792, 0.807]). c ROC curves derived from logistic regression models, using day-21 concentrations of IL-10 alone (pink line, AUC: 0.83, 95% CI 
[0.834, 0.842]); TIMP-1 alone (cyan line, AUC: 0.84, 95% CI [0.840, 0.848]); fibronectin alone (green line, AUC: 0.86, 95% CI [0.859, 0.866]); TIMP-1 and 
IL-10 (red line, AUC: 0.87, 95% CI [0.866, 0.873]); fibronectin and TIMP-1 (brown line, AUC: 0.87, 95% CI [0.875, 0.882]); fibronectin and IL-10 (blue line, 
AUC: 0.88, 95% CI [0.876, 0.883]); and fibronectin, TIMP-1, and IL-10 (black line, AUC: 0.89, 95% CI [0.884, 0.891]). d ROC for tenfold cross validation 
performed by using day-21 concentrations of fibronectin, TIMP-1, and IL-10 as predictors (AUC: 0.86, 95% CI [0.855, 0.870])
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because the healing trajectory of a wound depends on 
the wound type and on specific wound characteristics, 
such as its area, depth, location, and closure rate. Despite 
this diversity, commonly occurring wound pathologies, 
such as HTSs and keloids, are typically characterized 
by excessive collagen synthesis and deposition [14, 15]. 
Consistently with this observation, we define “pathologi-
cal scarring” as situations when wounds display exces-
sive collagen levels compared to normal-healing wounds. 
HTSs have been reported in wounds of different types, 
including abrasions, lacerations, surgical incisions, and 
‒ most frequently—burn wounds [3, 4, 15, 32, 33]. Thus, 
our model-identified protein biomarkers can be used to 
predict wound outcomes in all of these types of wounds. 
In practice, due to the constraints imposed by different 
wound characteristics (such as its location, area, and 
state of closure), our modeling results may be suitable 
only for clinical situations where reliable measurements 
of the model-identified proteins at weeks 2 and 3 post-
injury are feasible.

Once prognostic markers for HTSs are established, 
an easy and effective sampling method will be required. 
Wound effluent is a promising source of candidate pro-
tein biomarkers predictive of pathological scarring [5, 
34]. Indeed, some wound-effluent proteins have been 
linked to abnormal wound-healing conditions. For exam-
ple, IL-6 levels are consistently elevated in dehisced trau-
matic wounds compared to wounds that healed normally 
[31, 35]. Moreover, the effluent from chronic ulcers is 
characterized by a high concentration ratio of MMP-9 
to TIMP-1 [30, 36]. However, wound proteins have not 
been extensively investigated as biomarkers for patho-
logical scarring in the skin. One possible reason for this 
is the limited availability of wound effluent (compared to 
serum) beyond early after injury, a situation that restricts 
opportunities for proteomic analysis. Although wound 
tissue samples might substitute for wound effluent, their 
accessibility during the early stages of wound healing is 
also restricted in terms of clinical considerations, quan-
tity, patient condition, and patient consent [5]. Improve-
ments in microsampling technologies may eventually 
overcome these obstacles.

The putative protein biomarkers identified in this 
study (i.e., IL-10, TIMP-1, and fibronectin; Fig. 6) have 
been shown to exhibit diagnostic properties in fully 
developed HTSs or keloids in humans [14, 20, 22–24, 
37–41]. Therefore, a similar correlation between the 
protein levels and pathological scarring could plau-
sibly persist at earlier times during wound healing. 
This notion is supported by the fact that IL-10 is sig-
nificantly elevated in the serum of burn injury patients 
who later develop HTSs and in the serum of animals 
and patients with fibrosis in the lung, intestine, and 

liver [20, 42]. IL-10 is the main anti-inflammatory 
cytokine involved in the later phase of inflamma-
tion and inhibits pro-inflammatory cytokine produc-
tion [43, 44]. In addition to macrophages and T cells, 
IL-10 is produced by skin cells, such as keratinocytes 
and fibroblasts [45, 46]. The model-predicted capacity 
of IL-10 as a putative biomarker is in accord with this 
protein’s prominent role at the beginning of the prolif-
erative phase. IL-10 can affect the expression of ECM 
effectors, such as MMP-1, MMP-8, and MMP-9 (both 
inhibitory and enhancing effects have previously been 
reported) [47], and enhance the production of TIMP-1 
[43]. TIMP-1 is a glycoprotein that inhibits the action 
of collagen-degrading MMPs [22, 40]. High serum 
TIMP-1 levels characterize certain fibrotic diseases, 
such as liver cirrhosis, lung fibrosis, and skin fibro-
sis [39, 40]. Therefore, high levels of TIMP-1 in skin 
wounds are also likely to be predictive of pathological 
scarring. Among the three model-identified prognostic 
biomarkers, fibronectin demonstrated the highest pre-
dictive accuracy (Figs. 4 and 5). This is consistent with 
the biological function of fibronectin, which is the first 
ECM protein deposited during fibrogenesis [48]. Fur-
thermore, fibronectin contributes to the regulation of 
collagen deposition by fibroblasts, conversion of fibro-
blasts to myofibroblasts, and promotion of wound con-
traction, all of which are essential for scarring [49].

The main limitations of this study arise due to the sim-
plifying assumptions made during the computational 
model development and analysis. Nonetheless, our com-
putational approach enabled systematic and efficient 
screening of proteins to identify putative biomarkers for 
future targeted testing. First, we used heuristic argu-
ments to select the specific threshold values to classify 
our simulations as representing normal wound healing or 
pathological scarring. Those arguments reflected the fact 
that pathological scars typically have elevated collagen 
and fibroblast levels [4, 9, 14, 15, 33]. Second, our com-
putational model represents 21 essential wound proteins, 
which form a subset of all the proteins present locally in 
the wound [50, 51]. Other wound proteins (e.g., angio-
genic factors) not considered in our analysis may serve 
as biomarkers of pathological scarring. Although our 
model focuses on local factors, systemic factors—such as 
platelet availability, hormonal fluctuations, and systemic 
infections—may influence wound-healing outcomes. 
Because pathological scarring is frequently caused by 
local factors [52, 53], such systemic factors are not explic-
itly included in our model. Finally, we evaluated the pre-
dictive accuracy of the model-identified biomarkers at 
only three times (i.e., on days 7, 14, and 21). The choice 
of these times was based on the average time of discharge 
for surgical patients (~ 1–2 weeks) [54, 55].
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Conclusion
Our work illustrates how computational approaches can 
potentially increase the efficiency of experimental stud-
ies by generating testable hypotheses regarding putative 
prognostic biomarkers of pathological scarring in human 
wounds. Ultimately, these predictions need to be tested 
in human wounds to confirm the utility of these prog-
nostic biomarkers in clinical settings. Computational 
models offer a non-invasive framework for evaluating 
current and emerging therapeutic strategies aimed to 
improve scarring outcome in wounds. Clinical validation 
of our model-predicted putative biomarkers could pro-
vide prognostic tools for objective, personalized clinical 
assessments of traumatic wounds.
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