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Abstract

Background: We can describe protein-protein interactions (PPIs) as sets of distinct domain-domain interactions
(DDIs) that mediate the physical interactions between proteins. Experimental data confirm that DDIs are more
consistent than their corresponding PPIs, lending support to the notion that analyses of DDIs may improve our
understanding of PPIs and lead to further insights into cellular function, disease, and evolution. However, currently
available experimental DDI data cover only a small fraction of all existing PPIs and, in the absence of structural data,
determining which particular DDI mediates any given PPI is a challenge.

Results: We present two contributions to the field of domain interaction analysis. First, we introduce a novel
computational strategy to merge domain annotation data from multiple databases. We show that when we
merged yeast domain annotations from six annotation databases we increased the average number of domains per
protein from 1.05 to 2.44, bringing it closer to the estimated average value of 3. Second, we introduce a novel
computational method, parameter-dependent DDI selection (PADDS), which, given a set of PPIs, extracts a small set
of domain pairs that can reconstruct the original set of protein interactions, while attempting to minimize false
positives. Based on a set of PPIs from multiple organisms, our method extracted 27% more experimentally detected
DDIs than existing computational approaches.

Conclusions: We have provided a method to merge domain annotation data from multiple sources, ensuring large
and consistent domain annotation for any given organism. Moreover, we provided a method to extract a small set
of DDIs from the underlying set of PPIs and we showed that, in contrast to existing approaches, our method was
not biased towards DDIs with low or high occurrence counts. Finally, we used these two methods to highlight the
influence of the underlying annotation density on the characteristics of extracted DDIs. Although increased
annotations greatly expanded the possible DDIs, the lack of knowledge of the true biological false positive
interactions still prevents an unambiguous assignment of domain interactions responsible for all protein network
interactions.
Executable files and examples are given at: http://www.bhsai.org/downloads/padds/
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Figure 1 Evaluation of different protein-domain annotation
merging strategies. (A) Using the InterPro database, we obtained
seven protein-domain annotations for yeast protein YNL271C from
three databases: PFAM [32], Superfamily (SF) [33], and SMART [34,35].
PFAM domains: FH2, Drf_FH3, and two Drf_GBD domains; SF
domains: Formin homology 2 domain (FH2 domain) and ARM repeat;
and SMART domain: Formin Homology. (B) The naïve domain-
merging strategy identified seven unique domains for YNL271C.
(C) Sequence locations helped identify some of the identical domains
(FH2, FH2 domain, and Formin Homology) but was not able to
differentiate between different domains that share the same sequence
position. (D) Taking into consideration both sequence location and
domain names/labels, our merging strategy identified four unique
domains: ARM repeat, Drf_FH3, Drf_GBD, and a domain consisting of
FH2 domains (FH2, FH2 domain, and Formin Homology).
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Background
The living cell is a dynamic, interconnected system where
proteins interact with each other to facilitate biological
processes. Large protein-protein interaction (PPI) datasets
have become available due to advances in experimental
biology and the development of high-throughput screen-
ing techniques. However, while existing data describe
thousands of protein interactions, such interactions still
constitute only a fraction of all PPIs for a small number of
available organisms [1-5]. Moreover, available PPI datasets
acquired from different experiments are often seemingly
inconsistent with each other, implying that the different
methods might produce false positive interactions or fail
to identify certain types of interactions [4,6-9]. Here, we
attempt to address this seemingly intractable problem by
focusing on bioinformatics approaches that use protein
domains as fundamental building blocks of protein
interactions.

Domains as protein interaction building blocks
Proteins consist of one or more domains and multiple
studies have shown that domain-domain interactions
(DDIs) from different experiments are more consistent
than their corresponding PPIs, suggesting that domains
may be fundamental in mediating physical interactions
between proteins [10-12]. Under the assumption that
protein interactions are mediated by domain interactions,
we can hypothesize that each interaction in a PPI dataset
can be converted into a corresponding set of pairwise
domain interactions. However, lack of direct experimental
evidence for interactions at the domain level means that
we can only account for, or explain, a small fraction of
known PPIs for any organism using experimentally deter-
mined DDIs. Determining the particular domains that
physically bind (i.e., mediate) a given PPI based on limited
structural information remains a challenge.
To address this challenge, we must first characterize

the specific protein domains that mediate protein inter-
actions. It is estimated that approximately 80% of
eukaryotic proteins and 67% of prokaryotic proteins have
multiple domains [13,14]. Most annotation databases
characterize each domain family using a small, curated
set of amino acid sequences common to representative
members. These databases share a significant amount of
protein-domain annotation data; however, each database
also contains a noteworthy number of unique protein-
domain annotations. Some databases, e.g., Conserved
Domain Database (CDD) [15] and InterPro [16,17], pro-
vide protein-domain annotation information collected
from several databases but none provides the capability
to methodically merge these annotations (Figure 1A).
Combining data from multiple databases, while address-

ing annotation inconsistencies, is a non-trivial procedure.
For example, a naïve domain annotation data-merging
strategy consisting of the aggregation of all annotation data
regardless of domain sequence overlaps or domain name/
label similarities would increase the average number of
hypothetical domains per protein. However, this strategy
would also overestimate the total number of domains,
because it considers domains that are not identically repre-
sented in two different databases as two different domains
(Figure 1B). In contrast, considering sequence information
as part of the naïve merging strategy, e.g., by aggregating all
annotation data that overlap in at least 10 continuous
amino acids, would reduce the number of inferred do-
mains per protein. However, such a merging strategy
inherently assumes that all domains that overlap in
sequence are identical, leading to a small number of
merged domains and, likely, an underestimation of the
total number of true domains (Figure 1C). The strategy
presented here combines sequence locations and name/
label information to construct merged domain annotation
sets in which the number of domains per protein is not a
priori over- or underestimated (Figure 1D).

Domain-based methods for reconstituting whole protein
interaction networks
The use of domains as mediators of protein interactions
requires the ability to assign domains to all proteins



Table 1 Yeast protein-domain annotation data from six
publicly available annotation databases

Database NP NS NO NU AD

n % n %

PFAM-A 4,709 80.0 1,174,333 40.2 2,595 2,553 1.05

SF 3,651 62.1 962,602 33.0 1,355 1,307 0.79

SMART 3,023 51.4 455,523 15.6 392 379 0.66

PRODOM 146 2.5 19,760 0.7 111 111 0.02

TIGRFAM 3,019 51.3 546,226 18.7 2,544 1,944 1.25

CDD 2,210 37.6 560,299 19.2 3,300 731 0.58

A total of 5,884 proteins containing a total of 2,921,809 amino acids were
downloaded from the Saccharomyces Genome Database [31]. NP, proteins with
at least one domain annotation. NS, protein-domain amino acid sequence
coverage. NO, number of unique domains in the original database. NU, number
of unique domains in the unified database. AD, average number of domains
per protein in the unified database.
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under consideration. However, in the case of multi-
domain proteins, it is unclear which particular domains
truly mediate a given PPI set, because more than one
potential domain pair can account for a single inter-
action. This uncertainty could lead to predictions of false
positive PPIs, as domains identified as mediators of pro-
tein interactions account not only for the original PPI
set but also for all other protein pairs that contain the
same domain pair combinations. Existing computational
methods use varying approaches to tackle different
aspects of these problems, each with its own set of aims,
strengths, and limitations [18-30]. For example, some
methods use additional biological information, such as
gene expression data, to establish whether a PPI can
occur [24,25,29], and others limit the PPI coverage to
smaller sets of high-confidence interactions [19,26,27].
An additional promising approach is to use a feature
selection algorithm to find a set of DDIs that best
discriminate between true and false PPIs [30]. However,
these methods are not broadly applicable to non-model
organisms or comprehensive enough to include protein
interactions on a proteomic scale.
In this regard, reconstitution methods provide a frame-

work that does not a priori require additional data and is
applicable on a genomic scale to any organism provided a
PPI dataset exists [20,21,23]. The aim of these methods is
to identify small sets of potential DDIs that reconstitute
the complete original set of PPIs. Overall, the aim of the
maximum-specificity set cover (MSSC) method [23] is to
minimize the number of potential false positive interac-
tions regardless of the number of DDIs used to explain
the PPI set, while the aim of the parsimonious approach
(PA) [20] and the generalized parsimonious explanation
(GPE) method [21] is to minimize the number of selected
DDIs regardless of the introduction of false positive inter-
actions. Despite their underlying differences, all three
approaches (MSSC, PA, and GPE) have been shown to
recover DDIs experimentally identified from structural
data. This leads to the observation that true DDIs are not
necessarily rare, promiscuous, or parsimonious, but rather
are distributed between the extremes. Consequently, a
method that reconstitutes protein interactions based on
different degrees of rare, promiscuous, and parsimonious
DDIs could prove beneficial.

Our contributions
Here, we investigate how to create merged sets of domain
annotations and how to use these annotations to select
sets of DDIs that reconstitute large-scale PPI networks
using different true positive and false positive selection
weights. First, we introduce a novel computational stra-
tegy to merge protein-domain annotation data from mul-
tiple databases, a needed capability that is not currently
available elsewhere. We believe that merging protein-
domain annotation data from multiple sources will help
ensure a large and consistent domain annotation set for
any given organism. Second, we introduce a novel heuris-
tic computational approach, parameter-dependent DDI
selection (PADDS), which, given a set of PPIs, extracts a
small set of DDIs that explains the original set of protein
interactions and is not biased towards DDIs with either
low or high occurrence counts. The heuristic scoring
system for selecting DDIs can be tuned between favoring
known interactions (true positives) and penalizing non-
observed interactions (false positives). Given that the
domain-merging procedure increases the number of
domains per protein and, hence, the number of possible
domain combinations, PADDS was designed to minimize
both the number of false positive PPIs and the size of the
extracted DDI set.

Results and discussion
Merged domain annotations from multiple databases
Our strategy combines sequence locations and name/label
information to construct merged domain annotation sets
as detailed in the Methods. Here, we illustrate its applica-
tion on a well-annotated single-cell organism. We created
a merged set of protein-domain annotations for yeast
(Saccharomyces cerevisiae) using sequences of 5,884
proteins,a downloaded from the Saccharomyces Genome
Database (SGD) [31] and yeast annotation data from six
commonly used annotation databases: PFAM-A (release
25.0) [32], Superfamily (SF) [33], SMART [34,35],
PRODOM [36], TIGRFAM [37], and CDD [15]. To assign
protein-domain annotations, we either used curated yeast
domain annotations (if available) [32,33] or extracted do-
main annotations based on an E-value threshold of≤ 10-2

[15,34-37]. Although approximately 80% of the proteins
had at least one domain annotation in one of the data-
bases (Table 1), this level of annotation density cannot be
expected for less-studied organisms. Thus, merging



Table 3 Yeast protein-domain annotation data after
merging annotations from the six databases

Domain
annotation set

NU NP NS AD

n % n %

Domain-merging procedure

SET-1 2,595 4,709 80.0 1,174,333 40.0 1.05

SET-2 2,847 4,964 84.4 1,510,026 51.7 1.33

SET-3 2,806 5,280 89.7 1,653,122 56.6 1.69

SET-4 2,843 5,307 90.2 1,663,269 56.9 1.69

SET-5 4,182 5,392 91.6 1,735,533 59.4 2.55

SET-6 4,114 5,395 91.7 1,756,481 60.1 2.44

Naïve domain merging

SET-6-NB 10,297 5,395 91.7 1,756,481 60.1 5.77

Domain merging based solely on sequence overlap

SET-6-SB 1,492 5,395 91.7 1,756,481 60.1 1.32

Database sets SET-1 through SET-6 are defined in Table 2. SET-6-NB
(naïve merging) contained the union of unique domain annotations from the
six databases used in SET-6. SET-6-SB contained merged domain annotations
from the same six databases as in SET-6, but domains in this set were merged
only if their sequences overlapped and they shared at least ten common
amino acids (i.e., domain labels were not considered). NU, number of unique
domains. NP, proteins with at least one domain annotation. NS, protein-domain
amino acid sequence coverage. AD, average number of domains per protein.
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protein-domain annotation data from multiple sources
will help ensure a maximally large and consistent domain
annotation set for any given organism.
Table 1 shows that, despite extensive annotation efforts,

each database characterized each protein by a small
average number of domains. It also shows the variation in
the number of domains extracted among the different
databases, as well as the variation in the number of
proteins with domain annotations.
The content of the final merged domain annotation

set does not depend on the order in which we merged
the databases. However, to create high-confidence mer-
ged annotation sets of different sizes, e.g., merged anno-
tation from two, three, …, six, databases, we first merged
the PFAM-A and SF contents because they contain
curated domains of high confidence. We selected the
merging order of the other four databases randomly and
Table 2 shows the database origins of the six merged
sets, SET-1 to SET-6.
Table 3 shows that the merging procedure increased

the number of proteins with domain annotation by more
than 10%. At the same time, the average number of
domains per protein increased from 1.05 to 2.44 (Table 3),
approaching the estimated average value of ~3 [10,14].
The final domain annotation set created using the data-
base merging procedure consisted of 4,114 unique do-
mains (Additional file 1). The domain length distribution
in this set was similar to the domain length distribution
from each of the six original databases (data not shown),
and most domains ranged in length between 100 and 300
amino acids.

Evaluation of the protein-domain annotation merging
strategy
To evaluate the merged domains, we compared our
results to those obtained with two simple alternative
strategies: a naïve domain-merging strategy (SET-6-NB)
and a naïve domain-merging strategy that takes into
account sequence overlaps (SET-6-SB). Because the num-
ber of original domains is constant, all three merged sets
(SET-6, SET-6-NB, and SET-6-SB) yielded the same
number of proteins with domain annotation. However,
their final domain annotations resulted in different num-
bers of unique domains, as well as different average
Table 2 Database origin of merged domain annotation sets

Annotation set Domain annotation databases

SET-1 PFAM-A [32]

SET-2 PFAM-A, SF [33]

SET-3 PFAM-A, SF, SMART [34,35]

SET-4 PFAM-A, SF, SMART, PRODOM [36]

SET-5 PFAM-A, SF, SMART, PRODOM, TIGRFAM [37]

SET-6 PFAM-A, SF, SMART, PRODOM, TIGRFAM, CDD [15]
numbers of domains per protein (Table 3). SET-6-NB
consisted of over 10,000 unique domains, with an average
number of 5.77 domains per protein. This set considerably
overestimated the total number of unique domains, as
many of its 10,000 domains represented the same domain
with a slightly different label. For example, the naïve
merging strategy would consider the formin homology 2 do-
main represented in three annotation databases (PFAM-A,
SF, and SMART) as different domains, because their
domain labels and sequence locations are not identical
(see Figure 1B). By merging annotations that overlap in at
least 10 continuous amino acids, SET-6-SB reduced the
number of unique domains to 1,492, as well as the average
number of domains per protein to 1.32. Although the
average number of domains per protein was greater than
the average number for any of the original databases, the
total number of unique domains was underestimated. For
example, the sequence location of ARM repeat overlaps
with the sequence location of Drf_FH3 and Drf_GBD
domains (see Figure 1C) and this strategy would merge
the ARM repeat with Drf_FH3 and also with Drf_GBD.
This would result in a merged domain that consists of the
three original domains, ARM repeat, Drf_FH3, and
Drf_GBD, even though these three domains are different
and should not have been merged. Our merging strategy
does not suffer from these issues, as it distinguishes
between the same and different domains that cover the
same sequence location based on their domain labels
(see Figure 1D).
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These results showed that our protein-domain-mer-
ging strategy did not overestimate or underestimate the
number of domains per protein. However, this does not
necessarily imply that the merged domain annotation is
biologically more relevant. To this end, we compared
our merged protein-domain annotations to the recently
released high-confidence annotations from the PFAM-A
database (PFAM release 26.0). To assess the amount of
correctly retrieved annotations from our merged set, we
compared them to the following two independent sub-
sets of the new PFAM release: 1) a set of new domain
annotations that replaced annotations from the previous
PFAM release (PFAM release 25.0) and 2) a set of new
domain annotations that did not exist in the previous
PFAM release but have a corresponding annotation in the
merged dataset.b The comparison procedure consisted of
two steps. First, for each new domain annotation, we
found one or more merged domain annotations that
covered the same protein sequence location. Then, we
manually compared domain labels and descriptions bet-
ween the new domain and the merged domains. Out of 17
new domain annotations in the first subset and 274 new
domain annotations in the second subset, we found 13
(76%) and 202 (71%) annotations, respectively, in our
merged dataset (Additional file 2). Because these account
for >70% of the new PFAM-A annotations, it demon-
strates the benefits of the proposed domain-merging
strategy.

Use of annotation-based domains to reconstitute protein
interaction networks
The introduction of a more complete set of domain
annotations across all interacting proteins in a genome
would allow for the enumeration of all domain interac-
tions that could account for an original set of PPIs.
Furthermore, this would also allow for a comprehensive
evaluation of DDIs and identification of an optimum DDI
set. However, this process has the disadvantage of
exponentially increasing the number of domain combina-
tions. To circumvent this problem, our PADDS method
enumerates only a subset of DDI combinations and evalu-
ates each one of them based on the following two criteria:
1) the number of DDIs used to account for the observed
PPIs and 2) the number of non-observed PPIs (i.e., false
positives) introduced by the combination of DDIs. As
detailed in the Methods, this selection depends on the
value of the parameter that specifies the true/false positive
biases, denoted as α; α ϵ [0.0, 1.0], where an α of 0.0 favors
observed protein interactions and an α of 1.0 maximally
penalizes non-observed interactions. We first used PADDS
to investigate the choice of selecting different values of the
parameter α on retrieved DDIs. Here, the DDIs were
constructed from a study containing multiple organisms,
but with protein-domain annotations from a single data-
base. The PADDS-extracted DDIs were compared to
other methods and validated using the iPFAM [38] and
DOMINE [39,40] databases of known and predicted DDIs.
We then applied the algorithm to extract DDIs from a
high-confidence yeast PPI dataset using merged domain
annotations. We compared the results from our analysis
to those of existing reconstitution methods on the same
datasets.

Multiple organism PPIs characterized by a single domain
annotation database
To determine the consequences of favoring true posi-
tives or penalizing false positives, we examined the abil-
ity of PADDS to generate different sets of DDIs that can
reconstitute a diverse set of PPIs from multiple organ-
isms for different values of α. We applied PADDS to a
collection of PPIs from 68 different organisms as assem-
bled by Riley et al. [27]. In order to compare our results
on this dataset to the GPE method, previously identified
as giving the best reconstitution results on this dataset
[21], we converted all domains to the same PFAM-A
supra-domain annotations used by GPE [21]. We identi-
fied 10,025 proteins with PFAM-A supra-domain anno-
tations and 20,625 PPIs where both interacting proteins
had at least one domain annotation. This dataset yielded
a total number of 26,113 potential DDIs that could be
used to reconstitute all PPIs and the average number of
domains per protein for this dataset was 1.37.
For each α used in PADDS to extract the DDI sets

(Additional file 3), we ranked the DDIs based on their
corresponding benefit values (see Methods). We evalu-
ated each set of top-scoring DDIs for enrichment of
DDIs detected in crystal structures available in the
iPFAM database (denoted as “known DDIs”) [38]. Out of
26,113 potential DDIs from the Riley dataset, 691 DDIs
were present in the set of known DDIs [20]. Figure 2A
shows the fraction of known DDIs retrieved for different
values of α in different top-ranked DDI sets. The overall
number of extracted known DDIs did not increase
linearly with the number of DDIs analyzed, and the total
retrievable number was less than 70% of the known set.
Additionally, the number of known DDIs retrieved
varied in a non-linear fashion with α, indicating that the
extraction procedure was sensitive to the selection
weights for both observed and non-observed interac-
tions. These observations imply a non-trivial solution to
the optimal DDI extraction problem. We also noted that
the largest number of known DDIs were always retrieved
in sets for which α was not at its extreme values of 0.0
or 1.0. For the small to intermediate size sets between
1,000 to 4,000 analyzed DDIs, the maximum retrievable
number occurred at α values ~0.10.
Figure 2B, Figure 2C, and Additional file 4: Table S1

show the difference in retrieving known DDIs between



Figure 2 Enrichment of “known” (iPFAM) domain-domain
interactions. Evaluation of the top-scoring domain-domain
interactions (DDIs) extracted by the parameter-dependent DDI
selection (PADDS) and the generalized parsimonious explanation
(GPE). (A) The fraction of known DDIs in the iPFAM database [38]
retrieved by PADDS as a function of α and the number of top-
scoring DDIs. (B) Comparison of the percentage of retrieved iPFAM
DDIs using PADDS and GPE as a function of top-ranked DDI sets
(i.e., recall). (C) Comparison of the fraction of retrieved iPFAM DDIs
using PADDS and GPE as a function of the iPFAM DDI set and
top-ranked DDI sets (i.e., precision). For the GPE sets, we used the
DDI rank information provided with the published data that includes
their designated high-confidence (GPE-HC) and low-confidence
(GPE-LC) sets [21]. We have also indicated the best results achievable
with any α value, typically achieved for α = 0.1.
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PADDS and the published results using GPE methods.
For PADDS, we show both the best results using
selected α values and average results using non-extreme
values of α. For this dataset, PADDS was more success-
ful (13% – 27%) than the best GPE method in the majo-
rity of the α selections away from the extreme values.
This implies that the ability to modulate the preference
for known interactions and tolerance of non-observed
interactions was an important factor in the process of
DDI extraction and the overall ability to extract known
DDIs. While there is always a dataset dependency on
these results, it was also clear that relaxing either
extreme selection (α = 0.0 or α = 1.0) retrieved more
known DDIs (Figure 2A).
Although DDI extraction can be optimized for each

dataset by varying α, one cannot in all cases independently
determine an optimal α value. Hence, we were also inter-
ested in the robustness of the algorithm and, in particular,
evaluating extracted DDIs that are independent of α. We
used the DOMINE database as a comprehensive source of
known and predicted DDIs derived from multiple sources
[39,40] to construct DDIs (Additional file 4: Validation of
extracted core DDIs section and Additional file 4:
Figure S1). The analysis showed that there was a large
overlap among the sets of extracted DDIs for different
values of α, indicating robustness of the algorithm to
choices of α. Furthermore, the PADDS algorithm was
capable of providing parameter-independent and unique
DDI predictions not derivable from high-confidence
results of other computational procedures. To further
characterize PADDS-extracted DDIs, we next examined the
high-confidence protein interaction network from a single
organism (yeast) with our merged domain annotations.

Single organism PPIs characterized by multiple
annotation databases
To evaluate the influence of the underlying set of PPIs
and protein-domain annotation data on the DDI extrac-
tion process, we reconstructed a set of high-confidence
yeast PPI data created by the Interaction Detection
Based On Shuffling (IDBOS) procedure at a 5% false dis-
covery rate [8,41]. We have previously shown that this
dataset identified binary interactions as well as, or better
than, the high-confidence consolidated yeast two-hybrid
set or other high-confidence datasets based on affinity
purification followed by mass spectrometry [8,41]. The
IDBOS dataset consists of 8,401 PPIs between 1,295
proteins. For protein-domain annotation of the IDBOS
dataset, we used our merged protein-domain annota-
tion data (SET-1 to SET-6) as described above. The
average number of domains per protein for the IDBOS
dataset was 2.69. Additional file 4: Table S2 shows the
complete statistics for the domain annotations in the
IDBOS dataset.



Figure 3 Overlap between extracted domain-domain
interaction sets for different values of parameter α. The graph
indicate fractional overlaps between sets of extracted domain-
domain interactions (DDIs) for the six different domain annotation
schemes defined in Table 2, for different sets of α values. As the
underlying set of PPIs, we used a high-confidence yeast PPI data set
created by the Interaction Detection Based On Shuffling (IDBOS)
procedure at a 5% false discovery rate [8,41].
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Evaluating domain interactions for high-confidence yeast
protein interactions
We evaluated the merged domain annotation sets using
three reconstitution methods: PADDS, MSSC, and GPE.
We used PADDS with parameter α ϵ [0.0, 1.0] in 0.1
increments, ranked the extracted DDIs based on the cor-
responding benefit value, and extracted the corresponding
ranked data for MSSC and GPE (see Methods). Although,
by construction, all obtained DDI sets accounted for all
original PPIs, different methods yielded DDI sets of differ-
ent sizes for each of the six domain annotation schemes,
with PADDS consistently extracting the smallest sets of
DDIs. Additional file 4: Figure S2, Additional file 4:
Table S3, and Additional file 4: Table S4 provide the
complete results of this analysis. However, despite of their
aim to minimize the number of false positives, all three
methods identified a much larger number of novel
(predicted) PPIs than what could be expected to occur in a
living cell [1,2,4,5]. Even if we assume that all predicted in-
teractions represent plausible physical interactions between
proteins, e.g., a specified PPI would occur if two proteins
were in close proximity, it is likely that in their native en-
vironment they are under additional biological regulation.
Thus, one cannot assume that all proteins that contain
interacting domains will necessarily interact within the cell,
due to the existence of alternative regulatory mechanisms
that control these interactions [42].
To evaluate the performance of the different reconsti-

tution methods on different domain annotation sets, we
investigated the ability of each method to extract DDIs
that accounted for the given PPIs while limiting the
number of false positive PPIs. For this calculation, we
defined the set of true non-interacting protein pairs as
the set of all pairwise protein interactions minus the
known true interaction set [18,20,30], see Methods.
Based on these definitions, we could then ascertain true
and false PPI predictions for each extracted set of DDIs
and construct the corresponding Receiver Operating
Characteristic (ROC) curves from an analysis of true
positive and false positive rates. PADDS outperformed
the other two methods for all six annotation sets
(Additional file 4: Figure S3 and Additional file 4:
Figure S4). The largest differences were most evident
for the larger annotation sets, e.g., SET-6, where the
other methods lack PADDS’s flexibility to extract a
small number of DDIs while limiting the introduction
of non-observed interaction.

PADDS increases diversity of DDIs when provided with
sufficient amounts of annotations
To investigate the relationship between the size of the
domain annotation sets and the obtained results, we
compared the set of DDIs (accounting for the IDBOS set
of PPIs) extracted by PADDS for different values of α.
We found that, for SET-1, approximately 80% of the
DDIs were represented in all extracted sets and were not
dependent on the particular value of α (a similar result
was observed in the multi-organism study). Figure 3
shows that, with an increasing amount of domain anno-
tation data, the number of DDIs represented in all
extracted sets decreased, and for SET-6 only ~30% of
the DDIs were represented in all sets. In contrast, we
observed an increased percentage of DDIs represented
by a single value of α with larger annotation sets, imply-
ing that this parameter introduced significant variations
among the extracted DDI sets when more domain anno-
tation data were available. These observations suggest
that, for limited amounts of domain annotation data,
computational methods are forced to select particular
DDIs, as these DDIs are the only ones that could
account for certain PPIs. Using additional domain anno-
tation data removed this bias, as more than one DDI
accounted for a larger number of PPIs.
In summary, PADDS extracted the smallest set of

DDIs for this extensively annotated high-confidence
network. However, similar to other methods, regardless
of how we biased our benefit score in the extraction
process or how efficient PADDS was in extracting true
positives, a large number of non-observed PPIs resulted
from these DDI selections.
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Conclusions
Proteins consist of one or more domains, and physical
interactions between proteins arise from interactions
between their specific domains. Given that there is more
consistency in DDIs detected from different experiments
than in the corresponding PPIs, the hope is that an in-
depth analysis of DDIs would improve our understanding
of PPIs and give us better insights into cellular function,
disease, and evolution. However, determining which
particular DDI mediates any given PPI is challenging,
because currently available experimental DDI data ac-
counts for only a small fraction of all existing PPIs. In this
paper, we present two contributions to the field of domain
interaction analysis.
First, we introduced a novel computational strategy

that systematically merged domain annotation data from
multiple databases; a needed capability that is not
currently available elsewhere. By combining sequence
locations with domain name and labeling information,
our merging strategy was less likely to grossly overesti-
mate or underestimate the number of domains per
protein. We showed that merging domain annotations
from six different databases increased the average num-
ber of domains per proteins, bringing it closer to the
estimated true value. We believe that our merging
strategy can ensure a large and consistent domain anno-
tation set for any given organism.
The second contribution detailed here is the develop-

ment of PADDS, a novel computational method that,
given a set of PPIs, can identify a small set of potential
DDIs that account for the provided set of PPIs and is
not biased towards DDIs with low or high occurrence
counts. We showed that PADDS was more successful in
extracting known DDIs, i.e., DDIs that have been deter-
mined experimentally from crystal structures, than the
MSSC method and the current best reconstitution
method, GPE.
It was also noteworthy that the choice of α value influ-

ences the number of known DDIs retrieved. For the PPI
dataset aggregated from multiple organisms from different
sources and annotated by PFAM only, we retrieved the
largest number of known DDIs for small α values in the
range of 0.05-0.10. We interpreted this to indicate that a
small tolerance of false positives in the PPI reconstitution
procedure relaxed constraints in the DDI selection pro-
cess sufficiently enough to garner additional known DDIs,
yet avoiding overwhelming the solution with too many
non-observed interactions. This result also hints that the
hypothesis that all protein interactions must strictly be
composed of pairwise domain interactions could be
relaxed. We further found that increased amounts of
domain annotation data increased the diversity of DDIs
that could account for a single PPI. As a result, for the
densely annotated high-confidence yeast PPI network, we
found that less than 30% of the extracted DDIs were
present in all extracted sets. This last observation indicates
that, once we have a sufficient amount of annotation data,
more diverse DDI sets can be used to reconstitute PPI sets
equally well. As currently available reconstitution methods
identify only a single set of DDIs that account for a given
set of PPIs, a method that is able to identify multiple DDI
sets without a priori bias towards DDIs with either low or
high occurrence counts is a needed capability that is not
currently available elsewhere.

Methods
Domain annotation and interaction datasets
We used a number of available genome-scale annotation
databases that contain domain information. Each data-
base collates information based on different objectives
and criteria. PFAM-A contains manually curated protein
families and provides assignments of high-confidence
domain annotations through family-specific domain
gathering thresholds [32]; we used PFAM-A release 25.0.
SF contains structural and functional domain annota-
tion, derived from the structural protein domains from
the SCOP (Structural Classification of Protein) database
[33]. SMART provides annotation of signaling domains
[34,35], while PRODOM [36] and TIGRFAM [37] provide
protein domain family annotations constructed automatic-
ally by sequence homology. CDD, which provides func-
tional protein annotations, also lists domain annotations
using multiple sequence alignment models for domains
and proteins, as well as curated, structural domains and
domains imported from a number of other protein-
domain annotation databases (e.g., PFAM, SMART, and
TIGRFAM) [15].
Similarly, we used three databases to verify the extracted

domain interactions: 1) the iPFAM database that contains
domain-domain interactions obtained from the PDB struc-
tures [38], 2) the domain-domain and peptide-mediated
interactions of known 3D structure database (3DID)
[43,44], and 3) a comprehensive collection of known and
predicted DDIs (DOMINE) [39,40].

Protein – domain annotation merging strategy
Our merging strategy combines protein-domain annota-
tion data through the following three consecutive steps
(Figure 4):

Step I – Domain repeats merging procedure

In the first step, we merged domain repeats within
each database. Domain repeats represent two or more
domains from the same domain family that appear in
tandem [45]. Different proteins may have domain
repeats that consist of a different number of domains
from the same domain family. In annotation databases,



Figure 4 (See legend on next page.)
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Figure 4 Protein-domain annotation merging procedure. An illustration of the computational procedure used to merge protein-domain
annotation data from multiple databases for a single protein P (consisting of n amino acids) and domain annotation data from three databases:
DB1, DB2, and DB3. INPUT: Protein sequences and protein-domain annotations from one or more databases. PROCESSING: The annotation data
were merged in three consecutive steps. In Step I, tandem domains within each protein (and for each database) were merged and represented
as a continuous domain with the same domain label as the tandem domains. In Step II, annotation data between all pairs of databases were
merged. In Step III, all pairs from Step II were merged into a final annotation set. In this step, new domain labels were assigned to the sets of
merged domains. OUTPUT: The output of the annotation merging procedure consists of 1) a set of new (merged) domain labels assigned to the
protein, 2) a mapping between the new and original domain labels, and 3) a list of merging exceptions. Based on these lists, one may (re)define
sets of labels that should be treated as equivalent or non-equivalent and iterate through the complete domain annotation merging
procedure (ITERATION).
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domain repeats are represented either as a set of
domains that appear in tandem or as a single domain
that corresponds to the union of the tandem domains.
Our procedure aimed to represent each domain repeat
as a single domain. This ensured a uniform
representation of all domain repeats and ultimately
removed inconsistencies among databases. To this end,
for each database and for each protein of interest, our
method flagged domains with identical labels and
assigned them to a single domain. The new domain
inherited all labels of its members. Furthermore, its
sequence was represented by a continuous amino acid
sequence containing both the member domains and
the amino acid sequences between the domains
(Figure 4, Step I).
Although tandem domains that consist of different
numbers of domains from the same family may have
different functional roles, our current implementation
did not distinguish between them. We chose this
strategy because the domain annotation data retrieved
from most annotation databases depend on an E-value
threshold and, hence, it was not possible to accurately
and indisputably determine how many domains appear
in tandem. Furthermore, the E-value threshold could
also influence the length of the amino acid sequence
between tandem domains that were merged together.
For this reason, we did not impose a limit on the
minimum or maximum sequence length between
tandem domains in the merging procedure.

Step II – Merging annotation data between pairs of
databases

In the second step, we merged annotation data between
each pair of databases, including each database with
itself. This step ensured that all possible domain pairs
were considered and it removed any possible effect of
the order in which domains and databases were
merged. In this step, for each protein, we grouped
domain annotations into sets such that domains within
a set had equivalent domain labels and overlapped with
approximately the same segment of the protein
sequence, i.e., it matched at least ten continuous amino
acids. The final merged domains were not sensitive to
the examined threshold variations ranging from 1-30
amino acids. Domain annotations within each set were
merged into a single domain. The new domain
inherited all domain labels of its members, i.e., it
became a multi-label domain. Furthermore, the
sequence of the newly defined domain represented a
continuous amino acid sequence that consisted of the
union of all amino acid sequences of the member
domains (Figure 4, Step II). By using a combination of
domain labels and domain sequences in the merging
procedure, the method ensured that potentially
different domains that covered approximately the same
segment of a protein sequence were not merged
together.
To determine if two domain labels were equivalent, we
first represented each one of them as an array of words
contained within each label. Because domain labels
often contain general common/trivial words (e.g., a,
the, domain, family, like, member, of, via, within), these
words were excluded from the domain labels. Next, we
compared all words from the first array to all words
from the second array to determine whether they
consisted of identical words or words that were
contained within each other (e.g., “kinases” and
“pkinase”). If such a pair of non-trivial words was
detected, the two corresponding domain labels were
considered equivalent. Clearly, this method of
determining the equivalence of two labels does not
guarantee a correct outcome. Therefore, our method
allows users to specify pairs of labels that should be
considered equivalent as well as pairs of labels that
should be considered non-equivalent (Figure 4,
“Predefined label relationships”). This functionality also
overcame problems that arose from labeling-scheme
variations that were not always recognized by
computational procedures for string comparison. For
example, the labels “fmt” and “formyltransferase” are
equivalent, where the first word represents an
abbreviation of the second. However, these words are
neither the same nor contained within each other, and
their equivalence cannot be detected solely by string
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comparison. A computational procedure that could
detect such equivalence based on string manipulation
would yield many false positives and was not pursued.

Step III – Creating a final annotation set

In the third step, all pairs of domains from all databases
in the second step were merged into a final annotation
set. The merging procedure was similar to the one
from Step II. Here, however, each domain annotation
set already contained some merged domains from Step
II. Therefore, for merged domains, the representative
sequence was the sequence derived in Step II and the
representative label was a multi-label annotation,
whereas, for domains that had not been merged, the
original label was used as their annotation. For each
protein, we grouped the domain annotations into sets
such that domains within the same set had equivalent
domain labels and overlapped with the same sequence
locations. Then, we merged the domain annotations
within each set into a single domain. Finally, we
assigned new domain labels to each set of merged
domains (Figure 4, Step III).
By merging all joined pairs from Step II, it was possible
to detect additional overlap between domain labels that
were not detected in Step II. For example, given three
domains with labels “abc-smc5,” “abc-atpase,” and
“smc” from three different databases, the computational
procedure in Step II would identify the domain labels
“abc-smc5” and “abc-atpase” as equivalent, the labels
“abc-smc5” and “smc” as equivalent, and the labels
“abc-atpase” and “smc” as not equivalent. Only the first
and second pairs of domains would therefore be
merged, assuming that all three domains covered
approximately the same sequence stretch. However, in
Step III, the computational procedure would determine
that the merged domain “abc-atpase abc-smc5” was
equivalent to the merged domain “abc-smc5 smc,” and
that the “smc” and “abc-atpase” domains would thus be
identified as equivalent, even though this was missed in
Step II (Figure 4).

For all string (word) comparison procedures, we used
string comparison algorithms available in a standard
C++ library.
For each protein of interest, our method outputs the

newly assigned domain labels and their corresponding
sequence locations. Additionally, the procedure provides
a list (dictionary) that contains mappings between the
new domain labels and labels from the original data-
bases, as well as a list of domain labels that overlapped
in sequence but were not similar enough to be
merged. These lists can be used to redefine a set of
labels that should be treated as the equivalent or dif-
ferent (Figure 4).
Definition of true and false positive/negative predicted PPIs
In this work, we have adapted an operational definition of
true and false PPI predictions based on what is known
about a given protein interactions network. Given a set of
n proteins and m known, experimentally detected pairwise
interactions among these proteins (the interacting set), we
defined the set of non-interacting protein pairs as the set
that includes all pairwise PPIs among the n proteins,
except for the known interactions. Hence, the number of

non-interacting PPIs is given by
n
2

� �
−m [18,20,30]. We

then defined a true positive (TP) PPI prediction as a
predicted PPI that belongs to the interacting set. Similarly,
a false positive (FP) PPI is defined as a predicted PPI that
belongs to the non-interacting set. A true negative (TN)
PPI prediction is defined as a predicted non-interacting
protein pair that belongs to the non-interacting set. A false
negative (FN) PPI prediction is defined as a predicted
non-interacting protein pair that belongs to the inter-
acting set. The true positive rate is then defined as TP/
(TP + FN) and the false positive rate as FP/(FP + TN).
Parameter-dependent DDI selection (PADDS) algorithm
PADDS was designed to select sets of DDIs that can
reconstitute a given protein interaction network. Speci-
fically, for each potential DDI and its corresponding
PPIs, we assessed the consequences of selecting that
particular DDI versus each one of the other possible
DDIs that account for the same PPIs (we denoted these
DDIs as alternative DDIs). Instead of exploring all pos-
sible combinations of alternative DDIs, PADDS explores
only a subset of enumerations consisting of currently
evaluated DDIs and their best alternatives, i.e., alterna-
tives that best satisfy the evaluation criteria. If the eva-
luated DDI was better than any alternative, it was selected
as a PPI mediator and assigned a benefit score. Already
selected DDIs, as well as the PPIs they accounted for, were
never re-evaluated, further limiting the number of combi-
nations to be enumerated. The final constructed set of
domain interactions represented a minimal DDI set that
accounted for all PPIs, while attempting to minimize false
positives.
In contrast to existing reconstitution methods, PADDS

does not a priori reward or penalize the most rare, pro-
miscuous, or parsimonious set of interactions. Instead, it
biases the benefit of each selected domain interaction
towards either preferring observed PPIs (true positives)
or penalizing non-observed PPIs (here categorized as
false positives). Thus, depending on the value of the
parameter that specifies the true/false positive biases
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(denoted as α; α ϵ [0.0, 1.0]), PADDS extracts multiple sets
of potential DDIs that can explain the original set of PPIs.
An α of 0.0 favors observed protein interactions and an α
of 1.0 maximally penalizes non-observed interactions. In
addition, PADDS also identifies a set of robust, core DDIs
that are independent of the parameter α.

Algorithm and implementation details
Let Oij denote the number of observed interacting protein
pairs, where one protein contains domain i and the other
contains domain j, and let Nij denote the number of all
possible non-interacting protein pairs, where one protein
contains domain i and the other contains domain j. The
association score Aij [28], which represents the probability
of interaction between domains i and j, is defined as:

Aij ¼ Oij

Oij þ Nij
: ð1Þ

Let α denote a parameter with a value in the [0.0, 1.0]
range that specifies the amount of tolerable non-
interacting protein pairs. We evaluated the probability of
the occurrence of a domain pair i and j in a set of PPIs
as a modified association score Am

ij :

Am
ij ¼

Oij
2

Oij þ α⋅Nij
⋅ ð2Þ

For α = 0.0, Am
ij equals the number of observed DDIs,

i.e., the number of PPIs in which one protein contains
domain i and the other contains domain j, whereas for
α = 1.0, Am

ij denotes the probability of interaction bet-

ween domains i and j [defined in Equation (1)] multiplied
by the number of domain interaction occurrences. Thus,
for α = 0.0, the modified association score corresponds to
domain interactions that explain the largest number of
PPIs, while for α = 1.0, the score corresponds to domain
interactions that do not introduce large number of false
positive PPIs. We multiplied the probability of interaction
by Oij to differentiate between DDIs that have the same
probability by assigning a higher score to those DDIs that
account for a larger number of PPIs.

Benefit definition
The benefit of interaction between two domains i and j
represents the propensity that these two domains
mediate protein interactions. We defined the benefit by
combining the above modified association score with a
term that takes into account the co-occurrence of
domains, because domains that appear together within a
protein often interact [46,47]. Let Cij denote the number
of proteins in which domains i and j co-occur, and let
maxCij denote the maximum number of co-occurring
domains observed in a given set of proteins. We then
defined the benefit Bij of the interaction between two
domains i and j as:

Bij ¼ Oij
2

Oij þ α⋅Nij
þ Cij

2

maxCij
: ð3Þ

Using different values of α, one can rank the same set of
DDIs differently based on their Bij value.

Iterative evaluation of selected DDIs
PADDS goal is to extract a set of DDIs such that: 1)
these DDIs account for a given set of PPIs and 2) the
sum of benefits of this set is higher than the sum of
benefits of any alternative DDI set of the same size that
explains the same PPIs. The optimal solution for this
problem would require the exhaustive enumeration of
all possible combinations of DDIs that account for the
original set of PPIs. Because, in practice, the exhaustive
enumeration is computationally unfeasible, PADDS uses
a heuristic solution. Given a set of PPIs, a list of protein-
domain annotations, and a user-specified parameter α,
PADDS calculates Bij for each potential DDI (Figure 5 – I).
For each DDI and the corresponding PPIs represented by
this DDI, PADDS evaluates the consequences of selecting
this DDI versus each of its alternative DDIs. This evalua-
tion yields a small set of DDIs, called the final set.
The evaluation process consists of five phases. In the

first phase, PADDS adds a DDI of interest into a set
called the main set. In addition, PADDS evaluates all
alternative DDIs, i.e., DDIs that overlap with the DDI of
interest, and adds the one with the highest benefit to a
set called the alternative set. Note that the main and
alternative sets are initially empty (Figure 5 – II, Step: 0
and Step: 1). In the second phase, PADDS evaluates all
DDIs that overlap with the DDIs from the alternative
set (Figure 5 – II, Step: 2 to Step: 4). PADDS always
evaluates only the DDIs that are not already contained
in the alternative, main, or final sets. However, in the
evaluation process, PADDS takes into consideration that
DDIs from the final set already account for a particular
subset of PPIs. Because these PPIs should not be used
for the evaluation of potential DDIs, for all potential
DDIs that are not in the final set, PADDS calculates the
reassessed benefits Br

ij as:

Br
ij ¼

Oij−Eij

Oij
⋅Bij−s⋅Eij; ð4Þ

where Eij represents the number of observed interacting
protein pairs containing domains i and j that have
already been accounted for by some other DDI (either
from the main/alternative set or the final set), and s
represents a scaling factor used to additionally reduce
the benefit value of DDIs. We empirically selected
s = 0.01. Out of all evaluated DDIs, PADDS finds a DDI



Figure 5 Example of domain-domain interaction extraction. I: Given a set of protein-protein interactions (PPIs) and a protein-domain
annotation scheme, PADDS transformed all PPIs into the corresponding set of domain-domain interactions (DDIs) and calculated the benefit
value Bij for all DDIs. II: The five steps involved in the DDI iterative evaluation procedure is illustrated using interactions between domains D1 and
D3. III: After PADDS performed the DDI evaluation procedure for all other DDIs, the results were examined to select the final set of DDIs that can
reconstitute the PPIs. P1, …, P7 denote proteins and D1, …, D8 denote domains. The benefit Bij and the reassessed benefit Brij associated with the

interaction between domains ij were calculated using Equations (3) and (4), respectively.
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with the highest reassessed benefit and adds it to the
main set. In the second phase, the algorithm iterates
between the alternative set and the main set until all
PPIs that are explained by potential DDIs in one set are
also explained by potential DDIs from the other set. In
phase three, PADDS calculates the total accumulative
benefit Btot
ij for each set as:

Btot
ij ¼ k ⋅ ∑

m;n
Bmn þ 1−kð Þ ⋅ ∑

m;n
Br
mn; k ¼ 0 or 1

ð5Þ
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where k = 1 for DDIs that were added into a set based
on their original benefit value Bmn, and k = 0 for DDIs
that were added into a set based on their reassessed
benefit value Br

mn (Figure 5 – II, Step: 5). In the fourth
phase, PADDS compares the Btot

ij value of the main and

alternative sets. If the main set has the greatest Btot
ij

value, PADDS flags the DDI of interest and assigns it
this value. Then, in phase five, for all flagged DDIs,
PADDS finds the one with the highest Btot

ij value and

adds this DDI to the final set of DDIs (Figure 5 – II,
Step: 5). In the case where no DDI is flagged, i.e., all
alternative sets have higher Btot

ij values than their corre-

sponding main set counterparts, PADDS assigns to each
DDI a value equal to the ratio of Btot

ij of the main set and

Btot
ij of the alternative set. Then, PADDS adds DDI with

the highest ratio value to the final set (Figure 5 – III). This
evaluation procedure is repeated until all given PPIs are
explained by DDIs from the final set. Extracted sets of
potential DDIs that are common to all values of α are
denoted as the core set.
Ties between two DDIs are broken in the following

order: 1) minimum Nij, 2) maximum Oij, 3) maximum
number of times the interaction between domains i and j
explains a single PPI multiple times (e.g., if both proteins
contain domains i and j, then that PPI can be explained by
two i – j domain interactions), 4) maximum Cij, 5) maxi-
mum number of unique PPIs that a DDI explains, and 6)
maximum benefit. In cases where ties are not broken after
this procedure, they are broken randomly.
Data and implementation of other reconstitution
methods: GPE and MSSC
For the comparison with the GPE method [21] on the
dataset from Riley et al. [27], we used two sets of
published results; the first contained the top 1,399 high-
confidence DDIs (denoted “GPE-HC”) and the second
contained 7,554 DDIs of lower-confidence (denoted
“GPE-LC”) that were not necessarily included in the first
set. In the comparisons, we used the DDI rank informa-
tion provided with the published data [21].
For the yeast high-confidence dataset comparison, we

used the MSSC program available from the authors’ Web
site to extract and rank DDIs using the association score
[28]. We implemented the GPE algorithm in MATLAB
using the parameter values specified by the authors and
ranked DDIs using the LP-score, following the metho-
dology detailed in the original manuscript [21].
Endnotes
aThis set of proteins contains the translations of all

systematically named ORFs, except ORFs designated as
“dubious” or “pseudogenes.”
bThe remaining domain annotations did not change,
had minor modifications compared to the previous
version, had domains of unknown function, had domains
assigned to previously unannotated proteins, or had
domains assigned to previously unannotated sequence
segments.
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Additional file 2: Merged protein-domain annotations that
correspond to domain annotations from the new PFAM-A release.
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(release 25.0), but had a matching domain annotation in our merged set.
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