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ABSTRACT: Toxicological experiments in animals are carried out to
determine the type and severity of any potential toxic effect associated
with a new lead compound. The collected data are then used to
extrapolate the effects on humans and determine initial dose regimens
for clinical trials. The underlying assumption is that the severity of the
toxic effects in animals is correlated with that in humans. However,
there is a general lack of toxic correlations across species. Thus, it is
more advantageous to predict the toxicological effects of a compound
on humans directly from the human toxicological data of related
compounds. However, many popular quantitative structure−activity relationship (QSAR) methods that build a single global
model by fitting all training data appear inappropriate for predicting toxicological effects of structurally diverse compounds
because the observed toxicological effects may originate from very different and mostly unknown molecular mechanisms. In this
article, we demonstrate, via application to the human maximum recommended daily dose data that locally weighted learning
methods, such as k-nearest neighbors, are well suited for predicting toxicological effects of structurally diverse compounds. We
also show that a significant flaw of the k-nearest neighbor method is that it always uses a constant number of nearest neighbors in
making prediction for a target compound, irrespective of whether the nearest neighbors are structurally similar enough to the
target compound to ensure that they share the same mechanism of action. To remedy this flaw, we proposed and implemented a
variable number nearest neighbor method. The advantages of the variable number nearest neighbor method over other QSAR
methods include (1) allowing more reliable predictions to be achieved by applying a tighter molecular distance threshold and (2)
automatic detection for when a prediction should not be made because the compound is outside the applicable domain.

1. INTRODUCTION

The maximum recommended daily dose (MRDD) of a drug is
an estimate of the upper daily dose limit above which the drug’s
efficacy is not improved, or its adverse effects outweigh the
benefits.1 For most drugs, the MRDD is limited by toxicity, and
therefore, it is an important component of a drug’s labeling for
its safe use. Toxicity issues are also one of the main reasons why
many drug candidates fail in development.2 To reduce toxicity-
related attrition in the later and more costly drug development
stage, many structural moieties (alerts) known to be associated
with an increasing chance of toxicity have been identified and
used as filters in the earlier hit to lead discovery stage.3 Indeed,
a recent analysis by Stepan et al. showed that the majority of
drugs withdrawn from the market or required to have black box
warnings because of unexpected toxicity contained at least one
of these structural alerts.4 However, they also showed that
about half of the top 200 drugs by prescription and sales in
2009 also contained at least one of the structural alerts. This
indicates that one should not base go/no go decisions solely on
structural alerts, as doing so would have prevented nearly half
of the top-selling drugs from reaching the market and providing
important medical benefits to the patient population. Instead,
Stepan et al. found that a major differentiating factor between
the top-selling drugs and those withdrawn from the market or

required to have black box warnings appeared to be the daily
dose. Most of the top 200 drugs were administered at low daily
doses in the range of milligrams to tens of milligrams, whereas
most of the drugs withdrawn or having black box warnings were
administered at daily doses exceeding several hundred milli-
grams.4 In this regard, being able to predict the MRDD would
help assess the potential toxicity liability of a drug candidate
and avoid drug development failures.
As pointed out by Contrera et al., the MRDD is essentially

equivalent to the no observed adverse effect level (NOAEL) in
toxicology.1 In pharmaceutical development, animal NOAEL is
used to estimate the starting dose of human clinical trials.5 The
human equivalent dose (HED) is first constructed by
converting animal NOAEL (in mg/kg-body wt/day), derived
from toxicology studies, using the following equation:

=
×

HED NOAEL
[animal body weight(in kg)/human body weight(in kg)]0.33

(1)

The HED is, in turn, converted to a maximum recommended
starting dose (MRSD) by applying a safety factor, as follows:
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=MRSD HED/safety factor (2)

A default safety factor is 10, but values higher than 10 are used
in cases where the drug has a steep dose−response curve,
nonlinear pharmacokinetics, variable bioavailability, irreversible
toxicity, or limited animal data. Safety factors lower than 10 are
used when the drug under investigation belongs to a well-
known compound class with well-characterized toxicity
profiles.5 A fundamental assumption for estimating the starting
dose in human clinical trials from animal NOAEL is that a
compound’s toxic effect on the animal is correlated with the
toxic effect in humans. While this correlation may exist between
humans and closely related species such as primates, it is much
harder to recognize or justify such correlations between
humans and more distant animal species, such as rodents,
that are typically used in preliminary toxicological studies.6 As
an example, Matthews et al. compared the human MRDDs of
326 compounds with the corresponding rodent maximum
tolerated doses (MTD). The squared correlation coefficient
between the log(MRDD) and log(MTD) of the 326
compounds was only ∼0.20, indicating less than desirable
correlation between the two quantities.7

Given that MRDD is essentially equivalent to NOAEL, if we
can predict the MRDD of a new compound with reasonable
accuracy from the MRDDs of related compounds, the starting
dose for a phase I clinical trial could be estimated directly by
MRDD instead of NOAEL. This would significantly reduce the
number of animals used and the expenses associated with
preliminary toxicology studies. As pointed out by Contrera et
al., the uncertainty and error associated with the MRSD derived
from the quantitative structure−activity relationship (QSAR)
modeling of human data will be less than the current animal
extrapolation methods.1 However, there have been surprisingly
few publications on QSAR studies aimed at quantitative
prediction of human MRDD, even though QSAR techniques
are routinely used in many other aspects of predictive
toxicology. This is partly explained by the fact that the toxic
adverse effects of structurally diverse compounds originate from
many different molecular mechanisms, e.g., hepatic toxicity due
to reactive metabolites, cardiovascular toxicity due to the
inhibition of K+ channels, and central nervous system side
effects due to compound penetration across the blood−brain
barrier. It is not reasonable to expect a single global model
derived from fitting all of the training set data to adequately
predict the adverse effects.
Our literature search found only two QSAR studies for

quantitative prediction of the MRDD. Both of them were from
the Informatics and Computational Safety Analysis group of the
United States Food and Drug Administration (FDA). The
group collected MRDD data for 1,309 compounds from public
sources such as The Physician’s Desk Reference and
Martindale: The Pharmacopoeia as well as from proprietary
data submitted to the FDA. In the first study, molecular
structures of the compounds were fragmented into 2- to 10-
atom fragments. Statistical analyses were performed to identify
fragments that might contribute to the adverse effects, and a
numerical value was assigned to each fragment representing its
contribution to MRDD. Prediction models were constructed
based on the fragment contributions. An internal cross-
validation using 120 compounds showed that the models
were able to estimate MRDD to within a factor of 10 of the
experimental values.7

In the second study, the MRDD values (in mg/kg-body wt/
day) were converted into a logarithm activity scale.1 To predict
the MRDD for a target compound, a similarity search was first
performed in the MRDD data set. Fifteen compounds most
similar to the target compound and meeting a preset 80%
similarity threshold were selected. A QSAR model was built
correlating the MRDD of the 15 compounds with their two-
dimensional molecular descriptors. The model was then used to
predict MRDD for the target compound. In the study,
molecular similarity was measured by the cosine coefficient or
Tanimoto coefficient. Consistent with the observation that the
Tanimoto coefficient is a more stringent similarity measure
than the cosine coefficient,8 the authors found that for most of
the compounds, there were <15 near neighbors in the 1,309-
compound data set that met the 80% Tanimoto similarity
criterion. In such situations, the cosine coefficient was used as
the similarity measure. This approach for MRDD prediction is
computationally demanding, as it requires the construction of a
QSAR model, on the fly, for each compound for which a
prediction was to be made. This individualized local QSAR
model approach is compatible with the notion that structurally
similar compounds are likely to exert their adverse effects via
the same mechanisms. Internal validation using 120 com-
pounds from the 1,309-compound data set indicated that the
approach had 71% coverage, i.e., 29% of the compounds had
<15 near neighbors meeting the 80% similarity criterion for a
prediction model to be developed.1

In essence, the method that the FDA group used in their
second study is a k-nearest neighbor (k-NN) regression
approach. Instead of performing explicit generalization for the
whole data set, k-NN constructs hypotheses directly from the
closest training examples. This method is most commonly used
to classify objects,9 but it can also be used for regression.10 In
the simplest form, k-NN assigns the average values of k nearest
neighbors as the predicted value of the object for which a
prediction is to be made. Significant improvements can be
achieved by weighting the contributions of the neighbors so
that the close neighbors contribute more to the prediction. In
this sense, k-NN is a locally weighted learning method.11

Locally weighted learning is well suited for modeling biological
response induced by small molecules, as structurally similar
compounds tend to have similar biological responses.12 In
recent years, we have seen more applications of k-NN in the
computational study of molecular biological activity.13−18 In
this article, we report results of our recent study applying both
constant and variable numbers of nearest neighbors in locally
weighted learning to predict human MRDD. We show that, in
agreement with Contrera et al., the uncertainty and errors
associated with the MRSD derived from locally weighted
modeling of human MRDD are less than the current animal
extrapolation methods. The same approach can also be applied
to predicting/evaluating dose-related toxicity in animals and
potentially reduce animal usage and expenses in the
toxicological characterization of drug candidates.

2. MATERIALS AND METHODS
2.1. Methods. 2.1.1. Distance-Weighted k-NN Method. Suppose

we want to predict the biological activity y of a compound, and this
compound has k nearest neighbors in the training set with activity
values of y1, y2, ..., yk. A reasonable estimate of y would be the
following:
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This estimate minimizes the squared error C, which is defined as
follows:
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(4)

However, this estimate treats all training data points equally, which is
not consistent with the observation that structurally similar
compounds are more likely to have similar bioactivity. A remedy is
to apply a distance-related weight to the error criterion, as follows:
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i i
1

2

(5)

where di is the distance from a training set compound i to the query
compound for which a prediction is to be made, and K is a weighting
function. The best estimate should minimize C, i.e., (∂C)/(∂y) = 0,
which is commensurate with the following:
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Depending on the numerical representation of molecular structures,
the distance between two molecules can be defined in many ways. For
example, with a conventional molecular descriptor representation, the
Euclidean distance, d(p,q), is defined as follows:

∑= −
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2

(7)

where qi and pi are the corresponding values of descriptor i of
molecules p and q, respectively. The cosine distance is defined as
follows:
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and the Tanimoto distance is defined as follows:
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For small molecules, it has been shown that the best measure of
molecular similarity is the Tanimoto distance using molecular
fingerprints as descriptors.8 The fingerprint-based Tanimoto distance,
dTan, is defined as follows:

= − ∩
+ − ∩

d
n P Q

n P n Q n P Q
1

( )
( ) ( ) ( )tan

(10)

where n(P ∩ Q) is the number of common on-bits in molecules p and
q, and n(P) and n(Q) are the total number of on-bits of molecules p
and q, respectively.
There are many reasonable weighting functions, such as the inverse

distance, 1/d, or the inverse distance squared, 1/d2. Here, we use a
Gaussian kernel as the weighting function in the following k-NN
procedure:

= −K d d h( ) exp[ ( / ) ]2 (11)

where h is a smoothing factor. The appropriate value of h for a
particular data set is determined via a cross-validation procedure.
In the k-NN approach, the number of appropriate nearest

neighbors, k, is typically determined from cross-validation studies.
Once a value for k is selected, it will remain the same for future
predictions. In this sense, the conventional k-NN method is a constant
number of nearest neighbor method.

2.1.2. Distance-Weighted Variable Number Nearest Neighbor
Method. As pointed out by Contrera et al., Tanimoto similarity is a
stringent molecular similarity measure. Not many compounds in the
1,309-compound MRDD data set have 15 or more neighbors meeting
the ≥80% Tanimoto similarity threshold (equivalent to dTan = 0.20).
In order to use a constant number of 15 nearest neighbors to build
their prediction models, Contrera et al. switched the similarity
criterion to the less stringent 80% cosine similarity. In our opinion, an
alternative and perhaps more meaningful approach is to use a
consistent molecular similarity criterion, which predisposes the
included compounds to exert their biological activity via the same
molecular mechanism. This will result in a variable number of near
neighbors, but a weighted average of the activity values of all the near
neighbors should be a good estimate of the activity of the query
compound. We call this the variable number nearest neighbor (v-NN)
method. Specifically, in the v-NN method:
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where v represents all the compounds meeting a molecular fingerprint
Tanimoto distance threshold (TDT), and K(di) is given by eq 11.
Both the TDT and the smoothing factor are determined via cross-
validation using training set compounds.

In this study, we evaluated the performance of both k-NN and v-
NN in predicting human MRDD. We used the Pipeline Pilot
implementation14 of k-NN without modification, and we implemented
v-NN as described above in Pipeline Pilot, version 8.0.1.19 Functional
class extended connectivity fingerprints with a diameter of four
chemical bonds (FCFP_4)20 were used as molecular descriptors in
this study. For comparison with the performance of other commonly
used regression methods, we also used a kernel-based partial least-
squares (PLS) regression method implemented in Pipeline Pilot and
support vector machine (SVM) regression as implemented in R.21

Molecular descriptors used by PLS and SVM regressions are AlogP,22

molecular weight (MW), and electrotopological-state atom type
counts (E-State_count).23 We also used E-State keys as descriptors,
but a comparison of the results indicated that the performances of E-
State counts and E-State keys were very similar, with the former
marginally better when used with PLS and SVM.

2.2. MRDD Data Sets. 2.2.1. MRDD Training Set. We used the
FDA publicly disclosed MRDD database24 containing a total of 1,220
entries as the training set. As described by the FDA group,1,7 most of
the compounds in the data set are small organic molecule drugs.
Organometallics, high-MW polymers (>5,000 Da), nonorganic
chemicals (e.g., fibers, salts, and gases), mixtures of organic chemicals,
and very small molecules (<100 Da) were excluded from the data set.
The MRDD values are mostly oral single daily dose or its equivalent
for an average adult (60 kg body wt).

2.2.2. MRDD external validation set. The FDA group also collated
an additional group of 160 external validation compounds1 that were
not part of the training set from public sources and FDA files; 14 of
the 160 compounds were proprietary, and their names and molecular
structures were not disclosed. We retrieved molecular structure
information for the rest of the compounds by their names from
Drugbank25 and PubChem26 and used them as an external validation
set in this study.

2.2.3. Conversion of MRDD Dose Units for QSAR Modeling.While
the most prevalent dose unit for drugs, mg/kg-body weight, is easily
understood by physicians, pharmacists, and patients, it is an
inconvenient unit for modeling the relationship between an applied
dose and the pharmacological response. The most common approach
to study the relationship is to express the pharmacological response as
a function of the logarithm of the applied dose, usually in molar
concentration or mol/kg-body wt. In the present study, we converted
the mg/kg-body wt/day doses into log(mol/kg-body wt/day) via the
molecular weight of the drugs.

2.2.4. Standardizing Molecular Structures for QSAR Modeling.
For improved patient compliance, longer shelf life, cheaper storage and
transportation, and improved aqueous solubility, pharmacologically
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active compounds are usually combined with inactive additives to
become marketed drugs in different formulations. For oral drugs, the
most common formulations are tablets or capsules of the salts of the
effective components. In most of the cases, the additives are nontoxic
and pharmacologically inactive. To develop a QSAR model for MRDD
prediction, we removed all additives in this study. We understand that
in individual cases, a specific formulation may help modulate the
bioavailability of a drug and therefore may have an impact on the
MRDD. However, there was insufficient information in the FDA data
set for us to make a statistically reliable analysis of the effect at this
point. We therefore chose not to address the effect of the adjuvant and
assumed that it was within the uncertainty of the MRDD of the data
set.

After the inactive additives of the drugs were removed, the MRDD
in mol/kg-body wt/day was adjusted accordingly to reflect the change
in the molecular formula. For example, if the formulation of a
monoprotic acid drug is an Al3+ salt, the MRDD in mol/kg-body wt/
day of the acid was adjusted to three times the MRDD of the
aluminum salt in mol/kg-body wt/day. We then standardized the
structures of the resulting effective components of the drugs by
protonating all the acidic groups and deprotonating all basic groups.

There are, however, some two-component drugs where the second
components are not simple acids but contain more complex organic
structures. It is likely that both the beneficial pharmacological effects
and dose-limiting adverse effects of these drugs are due to one or both
components of these drugs. Figure 1 shows the molecular structures of

Figure 1. Molecular structures of two-component drugs in the FDA data set. They were excluded in the present study because of uncertainty in the
dose-limiting components.

Table 1. Enantiomeric Pairs and Their MRDD in the FDA Data Set

enantiomer
pair drug name

MRDD
(mg/kg)

enantiomer
pair drug name

MRDD
(mg/kg)

enantiomer
pair drug name

MRDD
(mg/kg)

1 dexbrompheniramine 0.8 6 lactose 100 11 pseudoephedrine 4
brompheniramine 0.4 maltose 100 ephedrine 1.67

2 dextroamphetamine 1 7 levocarnitine 49.5 12 methadyl acetate 2.33
amphetamine 1 carnitine 16.7 levomethadyl

acetate
4

3 dexamethasone 0.15 8 galactose 100 13 propoxyphene 6.5
betamethasone 0.15 dextrose 100 levopropoxyphene 1.67

4 dexamethasone acetate 0.15 9 dibromomannitol 4.17 14 thyroxine 0.005
betamethasone acetate 0.15 dibromodulcitol 4.87 levothyroxine 0.00833

5 dexamethasone
dipropionate

0.15 10 epirubicin 2.43 15 sorbitol 833

betamethasone
dipropionate

0.15 doxorubicin 2.43 D-mannitol 999
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these drugs in the FDA data set. For the first six drugs, the FDA group
listed both components as separate entries with identical MRDDs.
Since there was no information on which compounds are the dose-
limiting components in these drugs, we decided to exclude them in
this study. This reduced the total number of compounds in the
training set to 1,199. In addition, there are 15 enantiomeric pairs of
chiral compounds listed as separate entries in the FDA data set. Table
1 shows the compound names of these enantiomeric pairs and their
MRDDs. For each pair, the only difference in molecular structures of
the two members is the chirality at their stereo centers. It is well-
known that most drugs are chiral compounds, and in some cases,
different enantiomers of a compound may have significantly different
pharmacological effects.27 However, most drugs on the market are
racemic mixtures, presumably due to expenses in chiral synthesis/
separation, and, in most cases, there are small differences in the
efficacies. More importantly, the two-dimensional molecular structure-
based approach we used is unable to account for the difference in
molecular chirality. To properly investigate the impact of stereo-
chemistry on MRDD, it is necessary to model three-dimensional
molecular interactions between the drug and its biological targets that
contribute to the desired pharmacological effect as well as to those
targets that are involved in the dose-limiting adverse effects. Currently,
there is insufficient information on the full complement of biological
targets with which the drug molecules may interact. We therefore
decided not to further consider the impact of molecular chirality on
MRDD in the present study. Table 1 shows that for each enantiomeric
pair, the MRDD values of the two members are very close, with the
largest difference within a factor of 4 to each other. We retained one
structure from each pair with the lower MRDD value, whereas the
structure with higher MRDD was excluded from the training set. This
reduced the number of compounds in the training set to 1,184.
The same structure standardization procedure was also applied to

the external validation set compounds. One of the drugs, capreomycin,
was excluded as it is a two-component drug with no clear indication as
to which component or whether both components contribute to the
dose-limiting adverse effects. This reduced the total number of our
external validation set compounds to 145.
2.2.5. Details of QSAR Model Performance Evaluation. We

evaluated the performance of the QSAR approaches for modeling
MRDD in two steps. The first was a 40-fold internal cross-validation
using only the training set compounds. To do this, we randomly
divided the training set compounds into 40 groups of ∼30 compounds
each. MRDD values of all compounds in one group were predicted
using the rest of the compounds in the data set as the training set. The
process was repeated for every group so that the MRDD value of every
compound was predicted once. We then compared the predicted and
database MRDD values to determine the optimum number of nearest
neighbors in the k-NN approach and the optimum TDT in the v-NN
approach. Appropriate smoothing factors were also evaluated by cross-

validation. The same 40-fold cross-validation procedure was also
applied to the PLS and SVM methods.

In the second step of evaluating the performance of the QSAR
approaches, all compounds in the 1,184-member training set were
used for predicting the MRDD of the external validation set, with the
optimum number of nearest neighbors in the k-NN approach and the
optimum TDT of the v-NN approach fixed to the values determined
from the 40-fold cross-validation of the training set.

Finally, we merged the external validation set into the training set so
that locally weighted approaches have larger domain applicability, as
the combined MRDD data set covers a larger portion of chemistry
space.

3. RESULTS AND DISCUSSION

3.1. Performance of the k-NN Method. As described in
Materials and Methods, there are two tunable parameters that
may affect the performance of the k-NN method, the
smoothing factor h and the constant number of nearest
neighbors k. They are usually determined by cross-validation
calculations. In our experience, within a reasonable range h has
a small impact on the performance of the k-NN method using
the molecular fingerprint-based Tanimoto distance. However,
the impact is much higher when extreme h values were used.
For instance, when h approaches zero, distance penalties for the
near neighbors are amplified. However, when a large h is used,
the distance penalty is reduced. This is easy to understand as
the weight function is a function of distance over h. In the
Pipeline Pilot implementation of k-NN, 0.50 is the default h
value. To find the optimal combination of h and k for the
MRDD data set, we performed 40-fold cross-validation
calculations with h ranging from 0.40 to 0.70 and k ranging
from 3 to 45. Figure 2 shows the results of the cross-validation
calculations. In Figure 2, R is the Pearson correlation
coefficient,28 and mDev is the mean deviation between the k-
NN predicted and database log(MRDD) values. It shows that
the optimal combination of h and k for this data set was h =
0.60 and k = 24. This combination gave the best k-NN
performance, with the highest R of 0.74 and lowest mDev of
0.59 in log units. The results also show that the variation in R
and mDev due to the difference in h was within 0.01 for R and
0.02 log units for mDev. However, k had a much higher impact
on model performance. Starting with k = 3, model performance
improved with increasing k, reaching the best performance at k
= 24. From then on, the model performance deteriorated
slowly with increasing k.

Figure 2. Performance of the constant number nearest neighbor (k-NN) method with different smoothing factors (h) and number of nearest
neighbors, obtained from the 40-fold cross-validation of the training set compounds. R is the correlation coefficient, and mDev is the mean deviation
between k-NN predicted and database log(MRDD) values, where MRDD is the human maximum recommended daily dose.
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The inferior performance of the k-NN method with
extremely small k may be due to large variations and
uncertainties in the MRDDs for different therapeutic
indications. Drugs used to treat acute infectious diseases may
have high MRDDs, even at levels with significant adverse
effects, because patients will be using them for very short time
periods. Cancer drugs may also have MRDDs at levels with
serious adverse effects. However, drugs for chronic use are
understandably associated with low MRDDs. When k is too
small, the predicted MRDDs are dominated by contributions
from a very small number of training set compounds. With
increasing k, increasing number of compounds contribute to
the predictions via distance-weighted averaging, thus smoothing
out large variations and uncertainties in the MRDDs of the
training set compounds. This partly explains the slow
deterioration of performance at increasing k after the optimal
value of 24. With increasing k, increasingly dissimilar
compounds are brought in the calculation as nearest neighbors.
They should lead to inferior predictions because structurally
dissimilar compounds are more likely to have different
bioactivities. However, performance deterioration is limited

by distance-weighted averaging, resulting in the observed slow
decrease in model performance as a function of increasingly
large k.
In the k-NN method, it is assumed that a sample always has k

nearest neighbors that are similar enough that they have the
same mechanism of action. This, however, is hardly true for
most molecular systems. Figure 3 shows some examples from
the MRDD data set. In the first row of this figure, clioquinol
has a single near neighbor, iodoquinol, which has a Tanimoto
distance of 0.00 between them. The molecular structures of the
two compounds are almost identical. It is very likely that they
exert their adverse effect through the same mechanism(s), and,
therefore, they have almost identical MRDD values. The rest of
the compounds in the same row are the other closest near
neighbors to cliquinol in the MRDD data set. However, since
their Tanimoto distances to clioquinol are relatively large (0.67
or higher on a scale between close similarity at 0 to no
similarity at 1), there is hardly any structural similarity to
clioquinol. As a result, these compounds should not be
considered as chemically close neighbors to clioquinol, and it
makes no sense to include them in the k-NN prediction. The

Figure 3. Example molecular structures of query compounds (clioquinol and menadiol) and their structurally closest neighbors in the training set.
Top, clioquinol and its nearest neighbors; bottom, menadiol and its nearest neighbors. The top row of numerical values (negative numbers) are
log(MRDD) values of each compound, and the bottom row of numerical values are Tanimoto distances of the compounds to their respective query
compounds calculated with the FCFP_4 fingerprint.

Figure 4. Performance of the variable number nearest neighbor (v-NN) method with different h values and Tanimoto distance thresholds, obtained
from 40-fold cross-validation of the training set compounds. R is the correlation coefficient, and mDev is the mean deviation between v-NN
predicted and database log(MRDD) values, where MRDD is the human maximum recommended daily dose.
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second row of Figure 3 shows menadiol and its closest near
neighbors in the data set. Since none of the compounds in the
data set is structurally similar to menadiol, a MRDD prediction
should not be made by k-NN for menadiol. However, by
design, a prediction is always given by k-NN using the k nearest
neighbors no matter how structurally similar the query is to its
nearest neighbors. A better approach is to set a trusted
molecular structural similarity threshold so that only com-
pounds meeting the structural similarity criterion are included
in the distance-weighted averaging. This is the v-NN method
described in Materials and Methods (section 2.1.2).
3.2. Performance of the v-NN Method. We used the

same 40-fold cross-validation procedure to tune h and the TDT
of the v-NN method as described in Materials and Methods
(section 2.1.2). Figure 4 shows the results of the cross-
validation calculations. As expected, with increasing TDT
values, R decreased and mDev increased. The mDev data points
at TDT values of 0.15 and 0.20 were outliers of the general
trend. This is because with these extremely tight Tanimoto
criteria, only a small number of compounds have qualified near
neighbors in the data set. As a result, the predicted MRDD
values are statistically less reliable. The situation was similar to
the k-NN method with extremely low k values, as discussed in
section 3.1.
Similar to the situation found in k-NN, within a reasonable h

value range the performance of the v-NN method was not
sensitive to h (Figure 4). Since mDev increased with increasing
TDT, the results indicate that one should use low TDT for
better performance. However, the lower the TDT, the lower
the number of compounds having qualified near neighbors and
therefore the smaller is the applicable domain of the method.
This is shown in Figure 5, where the results were derived from

the same 40-fold cross-validation procedure but with a fixed h
value of 0.30. The coverage in Figure 5 is the percentage of
compounds whose MRDDs can be predicted by the v-NN
method, i.e., the percentage of compounds with near neighbors
meeting the TDT criteria. Obviously when applying the v-NN
method, one should choose a TDT by balancing prediction
reliability and coverage of the method. With a large
experimental data set, one can afford to use a tight TDT
without sacrificing coverage because a query compound is more
likely to have more qualified near neighbors in a large data set.
For the FDA MRDD data set, a reasonable compromise was to
set TDT to 0.45, which gave 64% coverage, an mDev of 0.56
log units, and an R value of 0.79 from the 40-fold cross
validation. By setting a molecular structure similarity threshold,

the v-NN method can determine if a reliable prediction for a
given compound can be made.

3.3. Comparison with PLS, SVM, and Nonfingerprint-
Based k-NN Methods. PLS and SVM are perhaps the most
popular regression methods in the QSAR community. The
most common approach in QSAR studies using these methods
is to develop a single global model to fit all the training set data.
As discussed in the Introduction, this is not expected to work
well for the MRDD data because multiple, and mostly
unknown, mechanisms of action contribute to the dose-limiting
adverse reactions. However, for comparison with the perform-
ance of the k-NN and v-NN methods, we performed the same
40-fold cross-validation calculations using PLS and SVM. For
PLS and SVM, FCFP_4 fingerprints are not suitable molecular
descriptors because they only encode the presence or absence
of a molecular fragment (e.g., a chlorine atom) and not how
many times a molecular fragment is present in a molecule. The
molecular fragment counts are crucial information for
regression models. Because of this, we used AlogP, MW, and
E-State counts as molecular descriptors.
The PLS calculation was done using Pipeline Pilot. A crucial

parameter affecting PLS predictive power is the number of
latent variables used. A higher number of latent variables used
always improves the fit of the training set data but may lead to
poorer prediction performance because of overfitting. Figure 6

shows R and mDev values obtained from 40-fold cross-
validation using different numbers of latent variables in the PLS
regression. As shown in Figure 6, the best performance that
PLS can achieve for this data set is an R value of 0.50 and an
mDev value of 0.79. These were compared with the
corresponding best values derived from the fingerprint-based
k-NN and v-NN in Table 2, indicating inferior performance to
the locally weighted methods.
We used the R implementation of SVM with a Gaussian

radial kernel for performance comparison. The Gaussian radial
kernel is a general-purpose kernel and usually performs better
than other kernels, especially when there is no prior knowledge
about the training data.29 The option of epsilon regression was
used to generate a regression model where epsilon was set to
0.1, indicating that the training set residuals were kept below
0.1 by increasing the number of support vectors as needed in
the training process. There are two important parameters
affecting the performance of nonlinear kernel-based SVM: the
cost and gamma parameters. To find the optimal combination
of the two parameters for the MRDD data set, we performed a
10-fold cross-validation with values of cost from 1 to 32 and

Figure 5. Performance and coverage of v-NN obtained from 40-fold
cross-validation of the training set with the h value fixed at 0.30.

Figure 6. Performance of partial least-squares regression with different
number of latent variables as measured by R and mDev values between
the predicted and database log(MRDD) values obtained from 40-fold
cross-validation using the FDA MRDD training set.
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values of gamma from 0.0125 to 0.2000. The optimal values
were found to be 4 for cost and 0.0500 for gamma. These
optimal parameters were then used in the 40-fold cross-
validation as described above. The R and mDev values derived
from the 40-fold cross-validation were 0.53 and 0.78,
respectively. The data shown in Table 2 demonstrate that the
performance of SVM was slightly better than PSL but worse
than k-NN and v-NN.
As both the k-NN and v-NN calculations described above

used molecular fingerprint as descriptors, we investigated how
their performance compared with k-NN using conventional
AlogP, MW, and E-State counts descriptors. Preliminary test
calculations indicated that with the conventional molecular
descriptors, the Euclidean distance worked slightly better than
the Tanimoto distance for k-NN. We therefore performed the
same 40-fold cross-validation using the Euclidean distance
calculated from AlogP, MW, and E-State count descriptors in
the k-NN approach. Figure 7 shows the results of the

calculations with increasing numbers of k and a fixed h of
0.50. It shows that performance of the k-NN improved slightly
with increasing k, as R increases with increasing k, and a
maximum value of 0.71 was achieved at a k of 90 with a
corresponding mDev of 0.626 log units. They were close to the
corresponding values of fingerprint-based k-NN and were
significantly better than the corresponding values of PLS and
SVM. This is consistent with our expectation that a single
global model approach is not suitable for data sets
encompassing biological responses from different molecular
mechanisms.
3.4. Predictions for Compounds in the External

Validation Set. To further examine the performance of the

fingerprint-based k-NN and v-NN methods, we applied them to
predict the MRDDs of the external validation set compounds.
A total of 145 compounds survived our structure stand-
ardization steps. To make a prediction for a compound in the
external validation set, a near neighbor search was performed in
the 1,184-compound training set. In the k-NN prediction, the
24 closest training set neighbors were used irrespective of the
actual Tanimoto distances between the external validation set
compound and the 24 nearest neighbors in the training set. In
the v-NN approach, the TDT was set at 0.45 so that all training
set compounds within 0.45 Tanimoto distance to the external
validation set compound were used for prediction. If no
compounds in the training set were within 0.45 Tanimoto
distance to a compound in the external validation set, v-NN did
not make a prediction for the external validation compound. An
h value of 0.60 was used for k-NN, and 0.30 was used for v-NN
as they were the optimal values from our 40-fold cross-
validation experiments. Sixty of the 145 external validation set
compounds did not have near neighbors in the training set
within a Tanimoto distance of 0.45, and consequently, the v-
NN method did not make predictions for them. For the other
85 external validation set compounds, Figure 8 shows a

histogram of the number of training set near neighbors (within
0.45 Tanimoto distance). It shows that 30 of the external
validation set compounds have only one training set near
neighbor. Seventeen of them have two near neighbors in the
training set. The number of validation set compounds having a
higher number of training set near neighbors decreases
significantly with increasing number of near neighbors.
Figures 9 and 10 show the results of MRDD predictions of

the k-NN and v-NN methods, respectively. For the 145
compounds, the R and mDev values of the k-NN predictions
were 0.52 and 0.75, respectively. v-NN gave predictions for 85
of the 145 compounds (59% coverage), with R and mDev
values of 0.66 and 0.68, respectively. To illustrate the impact of
the applicability domain, we also made v-NN predictions for
the 60 compounds without training set near neighbors within
the 0.45 Tanimoto distance. This was done by using a large
TDT of 1.0 so that all training set compounds were used in
distance-weighted averaging. The results are presented in
Figure 9 as red triangles. For the 60 compounds outside the

Table 2. Performance of Different Methods in 40-Fold
Cross-Validation Using FDA Training Set Data

method descriptors method parameters Ra mDevb

k-NN ECFP_4 fingerprint h = 0.60, k = 24 0.74 0.59
v-NN ECFP_4 fingerprint h = 0.30,

TDT=0.45
0.79 0.56

PLS AlogP, MW, E-
State_Counts

18 latent variables 0.50 0.79

SVM AlogP, MW, E-
State_Counts

cost = 4, g = 0.05 0.53 0.78

k-NN AlogP, MW, E-
State_Counts

h = 0.50, k = 90 0.71 0.63

aPearson’s correlation coefficient between the predicted and database
log(MRDD) values. bMean deviation between the predicted and
database Log(MRDD) values.

Figure 7. Performance of k-NN using AlogP, molecular weight, and
electrotopological-state atom counts as molecular descriptors. The
Euclidean distance given by eq 7 was used in the k-NN calculations.

Figure 8. An overview of similarity between the training and external
validation set compounds. The horizontal axis is the number of near
neighbors (within a Tanimoto distance of 0.45) the external validation
set compounds have in the training set. Bar height is the number of
training set near neighbors the external validation compounds have.
Not plotted is the bar height of validation set compounds having zero
near neighbors, which is 60.
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applicability domain of the v-NN method, the R and mDev
values are 0.37 and 0.79, respectively, indicating inferior
correlation between the predicted and FDA MRDD values
compared to that of compounds within the applicability domain
of the method.
The FDA group published their QSAR predicted MRDD

values (in mg/kg-body wt/day) for 99 of the 160 external
validation set compounds (62% coverage). For the rest of the
compounds, their QSAR model either gave bad statistics or had
no coverage (compounds outside the applicable domain of the

model), or the predicted values were too high or too low and
were considered off scale. 1 The logarithm of their predicted
values versus the corresponding log(MRDD) are shown in
Figure 11 for comparison. The R and mDev values of their

predictions for the 99 compounds were 0.48 and 0.70,
respectively. These values were similar to the corresponding
values of the k-NN and v-NN predictions. However, if one
examines the squared correlation coefficients derived from the
three methods (0.44, 0.27, and 0.23 of the v-NN, k-NN, and
FDA QSAR, respectively), it is clear that v-NN performed the
best, followed by k-NN and FDA QSAR. The mDev value
between the predicted and experimental log(MRDD) values
does not appear to be a good indicator of method performance
in this case because the FDA QSAR did not give predictions for
most compounds with extremely low MRDD values. Figures 9
and 10 show that for compounds with extremely low MRDD
values, the v-NN and k-NN predictions also tended to have
relatively large deviations.

4. CONCLUSIONS
In this study, we demonstrated that popular QSAR methods,
which use a single global model to fit all training data, do not
perform well in modeling the MRDD. The underlying reason
for this poor performance was that the biological responses
dictating the choice of MRDD arise from inherently different
molecular mechanisms, and therefore, global chemical structure
and structural similarity cannot be relied on to determine the
biological response. However, locally weighted learning
methods, such as k-NN, are well suited for such data sets.
Locally weighted methods make predictions based on the
closest near neighbors in the training set, and as long as the
assumption of structurally similar compounds having similar
bioactivities is valid, these methods naturally handle multiple
toxicological mechanisms.
Because the k-NN method always uses a constant number of

nearest neighbors in the training set to make a prediction for a
query compound, regardless of whether the nearest neighbors
are structurally similar enough to the query compound to

Figure 9. Correlation between the k-NN predicted and FDA external
validation set log(MRDD) values. The squared correlation coefficient
was 0.27, and the mDev value was 0.75 log units. The calculations used
the optimal values of k and h, 24 and 0.60, respectively, as determined
from a 40-fold cross-validation of the training set compounds.

Figure 10. Correlation between the v-NN predicted and FDA external
validation set log(MRDD) values. The black diamonds are results of v-
NN calculation using a TDT of 0.45. A total of 85 compounds in the
external validation set have near neighbors in the training set within a
Tanimoto distance of 0.45. For them, the squared correlation
coefficient is 0.44, and the mean deviation is 0.68 log units. The red
triangles represent external validation set compounds without near
neighbors in the training set within 0.45 Tanimoto distance (outside of
the applicability domain). Their predicted values were obtained using a
TDT of 1.0 (all training set compounds were used in making the
predictions). For the 60 compounds outside the applicability domain,
the squared correlation coefficient is 0.14, and the mean deviation is
0.79 log units.

Figure 11. Correlation between the FDA QSAR predicted and
external validation set log(MRDD) values. The squared correlation
coefficient was 0.23, and the mDev value was 0.70 log units.
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ensure similar bioactivity, it is expected that when a query
compound lacks structurally similar compounds in the training
set, the k-NN prediction will be unreliable. This is the case
when a query compound is outside the applicable domain of
the training set. In this case, no prediction should be given by
the method. The v-NN method we introduced in the study is
more advantageous than the k-NN method. In addition, v-NN
can give increasingly more reliable prediction by applying an
increasingly tighter TDT. Because the bioactivities of
structurally diverse compounds arise from multiple and usually
unknown molecular mechanisms, locally weighted learning
methods such as k-NN and v-NN are better suited and should
find more applications with time than methods relying on a
single global model.
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