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Abstract

Background: Protein structures are critical for understanding the mechanisms of biological systems and, subsequently, for
drug and vaccine design. Unfortunately, protein sequence data exceed structural data by a factor of more than 200 to 1.
This gap can be partially filled by using computational protein structure prediction. While structure prediction Web servers
are a notable option, they often restrict the number of sequence queries and/or provide a limited set of prediction
methodologies. Therefore, we present a standalone protein structure prediction software package suitable for high-
throughput structural genomic applications that performs all three classes of prediction methodologies: comparative
modeling, fold recognition, and ab initio. This software can be deployed on a user’s own high-performance computing
cluster.

Methodology/Principal Findings: The pipeline consists of a Perl core that integrates more than 20 individual software
packages and databases, most of which are freely available from other research laboratories. The query protein sequences
are first divided into domains either by domain boundary recognition or Bayesian statistics. The structures of the individual
domains are then predicted using template-based modeling or ab initio modeling. The predicted models are scored with a
statistical potential and an all-atom force field. The top-scoring ab initio models are annotated by structural comparison
against the Structural Classification of Proteins (SCOP) fold database. Furthermore, secondary structure, solvent accessibility,
transmembrane helices, and structural disorder are predicted. The results are generated in text, tab-delimited, and hypertext
markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial proteomes.

Conclusions: The standalone pipeline that we introduce here, unlike protein structure prediction Web servers, allows users
to devote their own computing assets to process a potentially unlimited number of queries as well as perform resource-
intensive ab initio structure prediction.
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Introduction

Three-dimensional (3-D) protein structures are critical for the

understanding of molecular mechanisms of living systems.

Traditionally, X-ray crystallography or nuclear magnetic reso-

nance methods are used to determine the structures of proteins

experimentally. In the post-genomic era, where many new

complete genomes are available every year and the number of

sequences total in the millions, it is impossible to rely on

experimental methods alone for structural characterization.

Therefore, computational prediction of protein structures is an

essential complement. Predicted protein structures help research-

ers in several ways. First, fold prediction is an important tool for

the functional annotation of proteins at the genomic scale [1–3].

Moreover, fold and structure predictions can be used to infer

binding interfaces [4], potential binding partners [5], and catalytic

active sites [6]. In addition, in silico drug screening can be

performed on close homologues of proteins with known structures

[7,8].

The quality of protein structure predictions is directly correlated

to the similarity of a query sequence to known protein structures

[9]. Procedurally, as shown in Fig. 1, query protein sequences are

first divided into manageable chunks. Optimally, domain

boundaries are used, but these are often experimentally unknown

and must be inferred computationally. Each domain sequence is

then compared for similarity against a database of known protein

structures, i.e., the Protein Data Bank (PDB) [10], which, to date,

consists of over 50,000 entries. If no matches can be detected, fold

recognition is instantiated, whereby various characteristics of the

domain sequence are predicted, including secondary structure,
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solvent accessibility, and sequence-specific substitution matrices.

These properties are pairwise aligned against the properties of

several thousand known protein folds (e.g., the Structural

Classification of Protein (SCOP) database [11]). Finally, if no

matches are made in this search, the 3-D atomic structure of the

protein domain must be built ab initio, i.e., the structure must be

assembled using energy functions and filters to guide the packing

of residues and multi-residue fragments. Because this is a

combinatorial process that does not guarantee a globally optimal

solution, thousands of models must be proposed. A high-resolution

energy function is then applied to ascertain which models might be

closest to the native protein [12,13].

Because computational protein structure prediction is a

complex, multi-step process, it requires many diverse tools, often

developed by multiple research laboratories, and the expertise to

use them. Many Web servers are available for predicting the

structure of a given protein sequence [14–16]. However,

depending on publicly available Web servers is not practical for

several reasons. First, they are a shared resource, and one may be

limited to a small number of sequence submissions in a given

amount of time. Conversely, servers that pre-process entire

genomes of protein sequences may be limited to offering only

comparative modeling results (e.g., ModBase [17]). Second, the

confidentiality of data cannot be guaranteed, i.e., the submitted

data and predicted results are often publicly viewable on the

server. Third, in some cases, one cannot be assured that the servers

are properly maintained and use the most recent databases.

Fourth, Web servers that require heavy computational processing

to perform ab initio fragment assembly (e.g., Robetta [15]) may

have query limits or long queues. Finally, servers are often

discontinued when the grant that establishes them terminates [18].

Given the sheer amount of genomic sequence data, a standalone

pipeline is necessary to process thousands of sequences at a time.

Moreover, access to a pipeline’s source code allows end users to

add or replace components as new techniques, software, or

databases become available. Standalone protein structure predic-

tion requires the integration of several tools, which have been

generously disseminated by various independent research labora-

tories. If software is to be distributed over multiple nodes (or cores)

in a cluster environment, it is often cost effective to rely on freely

available software. While open-source software is desirable, it is

not possible in some cases. Fortunately, the x86-based Linux

operating system is a common standard among computational

laboratories, and pre-compiled binaries tend to perform reliably.

In this work, we introduce a Perl-based software pipeline that

integrates multiple free software packages to predict protein

structures and structural properties [19]. It is composed of

sequence-level and domain-level modules (Fig. 1). Beyond what

has been described previously [19], the sequence-level module

predicts protein domain boundaries and properties, such as

secondary structure, solvent accessibility, transmembrane helices,

and structural disorder. The domain-level module produces 3-D

atomic protein models and structural annotations via three

strategies: homology, fold recognition, and ab initio fragment

assembly. In addition, multiple sequences can be handled

simultaneously via parallelization over numerous processing

cores with a message passing interface (MPI)-based job scheduling

tool.

Methods

The pipeline consists of Perl software modules, C-shell scripts,

freely available third-party software (albeit many with license

agreements), and an in-house implementation of an MPI job

scheduler, Pipeman [2]. The main Perl program, seq_router.pl,

processes command line parameters and calls sequence analysis,

domain boundary detection, and domain-processing modules for

individual protein sequences. This program can be run on a single

processing core or can run on multiple cores on a single computing

node using the multithreading capabilities of PSI-BLAST

(sequence searching) and PROSPECT II (fold recognition/

threading). A second program, mpi_seq_router.pl, performs multiple

sequence processing in parallel. This program reads a multiple-

sequence FASTA file, writes individually labeled sequences into

separate FASTA files, and then dispatches individual seq_router.pl

jobs via Pipeman. Each component is explained in more detail

below. Table 1 lists the third-party software and databases that

were integrated into this package.

Figure 1. Workflow for the protein structure prediction pipeline given a single query sequence.
doi:10.1371/journal.pone.0006254.g001

Protein Structure Prediction

PLoS ONE | www.plosone.org 2 July 2009 | Volume 4 | Issue 7 | e6254



Protein-level predictions
Before proteins are delineated into separate domains, several

properties can be predicted for each query protein, including

secondary structure, solvent accessibility, disorder, and the

presence of transmembrane helices. Most of these programs

require a position-specific substitution matrix (PSSM; a.k.a.

‘‘profile’’) generated by PSI-BLAST [20] using the nr database.

For efficiency, we generate the PSI-BLAST profile once and use it

for all protein-level predictions. This may slightly degrade the

accuracy of certain individual programs, since they are often tuned

with specific PSI-BLAST options.

Knowledge of the secondary structure of proteins is helpful in

protein classification, understanding protein folding, tertiary

structure prediction, and increasing the accuracy of multiple

sequence alignments. Although a finer categorization is possible,

protein secondary structures are generally classified into three

states: helix, strand, and coil. We incorporated three secondary

structure prediction tools into the pipeline: PSIPRED [21], SSPro

[22], and MUPRED [23].

Solvent accessibility prediction helps in the understanding of

protein tertiary structure, antigenic determinants, protein stability

analysis, protein structure classification, and protein interaction

analysis. We include ACCPro [22] and MUPRED [24] for solvent

accessibility prediction in our pipeline. Both programs predict

relative solvent accessibility and can be used for classifying residues

as exposed or buried using a threshold value.

In addition, transmembrane proteins are an important class of

proteins crucial to all multi-cellular organisms. They play a vital

role in signal transduction, ion transport, and other significant

functions. TMHMM [25] is incorporated in the pipeline to

designate different segments of a given protein sequence as

intracellular, extracellular, or transmembrane.

Moreover, intrinsically disordered proteins are often responsible

for molecular recognition, molecular assembly, protein modifica-

tion, and entropic chain activities in organisms [26]. In the

pipeline, disordered regions in proteins are predicted using

DISPro [27]. For each residue, its profile along with the predicted

secondary structure (using SSPro) and predicted solvent accessi-

bility (using ACCPro) are input to an artificial neural network that

outputs a residue level index from 0 to 9 (where 0 = fully ordered

and 9 = fully disordered) [27].

Finally, the query protein sequences are delineated into

separate domains using FIEFDom [28], a novel domain

prediction method that we have developed. Briefly, FIEFDom

performs a PSI-BLAST search of the full protein sequence

against a database of known multiple domain structures. A

consensus identification of domain boundary regions is accumu-

lated from profile-sequence matches with known structures. If

FIEFDom predicts one or more domains longer than 250

residues, which is often a result of failed domain recognition, the

user is provided with an option to use Bayesian statistics to break

the sequence into smaller blocks.

Domain-level predictions
After delineation of the query sequence into domains, each

domain sequence is routed to homology modeling, fold recogni-

tion, and ab initio fragment assembly (Fig. 1). If homology modeling

is successful, i.e., at least one template is found above a user-

specified sequence similarity threshold, the domain module

proceeds directly to all-atom scoring. Otherwise, fold recognition

is initiated. A fold confidence above a user-specified threshold will

trigger model building. After the generation of template-based

models by homology and/or fold recognition, all-atom scoring on

the models is performed as described below. Finally, if no models

Table 1. Third-party and in-house software and databases.

Software or Database Originating Laboratory Function Article Website

BLAST/PSI-BLAST NCBI Sequence search [20] [52]

CE Shindyalov & Bourne Structural similarity search [44] [53]

CHARMM1 Karplus Molecular minimization and scoring [37] [54]

DISPrO, SSPrO, and ACCPro Baldi Disorder, secondary structure, and solvent accessibility prediction [27] [55]

Jackal Honig Homology modeler [30] [56]

MMTSB Brooks and Feig CHARMM front-end/structural analysis [36] [57]

MUPRED Xu Secondary structure and solvent accessibility prediction [23] Bundled

NR/PDBAA NCBI Sequence databases [29] [58]

PDB RCSB Database of biological macromolecular structures [10] [59]

PROSPECT II ORNL Fold recognition/threading [34] [60]

PSIPRED Jones Secondary structure prediction [21] [61]

Rosetta Baker Ab initio folder [41] [62]

SCOP/ASTRAL Chothia and Murzin Database of protein folds [11] [63]

SCWRL3 Dunbrack Side chain placement [42] [64]

TMHMM Viklund Transmembrane helix prediction [25] [65]

DFIRE-AA In house Atomic scoring function [35] Bundled

FIEFDom In house Domain boundary prediction [28] Bundled

Pipeman In house MPI job distribution tool [2] Bundled

PROSPECT II templates In house Templates for SCOP 1.73 folds This work Bundled

PSPP In house Core software for the pipeline This work Bundled

1Optional (requires paid academic or commercial license).
doi:10.1371/journal.pone.0006254.t001
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are built, ab initio fragment assembly (if it has been selected as an

option) is instantiated.

In homology modeling, PSI-BLAST [20] is used to find

sequences of PDB structures that align to the query sequence.

First, the domain sequence is compared against the nr database to

generate a profile using three iterations of PSI-BLAST. The

sequence and profile are then compared against all sequences in

the PDB (i.e., the pdbaa database [29]), and the top hits are ranked

by sequence identity (i.e., the number of exactly matched residues

in the alignment divided by the length of the query sequence).

Finally, the program Nest, which is part of the Jackal suite of

protein modeling programs from the Honig laboratory [30], is

used to build homology models from the most promising

alignments. Regions of the model that do not align to the template

are treated as loops, which must be predicted ‘‘ab initio.’’ For this

reason, loop regions are often the largest sources of structural

errors in homology models. At present, the pipeline only supports

one template per comparative model.

The next prediction at the domain level is based on fold

recognition. While many good programs exist for this function

[31–33], few are freely available for download. One of the best

options is the free, but closed-source, program PROSPECT II

from the Oak Ridge National Laboratory [34]. Fold recognition

involves profile-profile alignment of the query sequence to a

template database of known folds. In addition to profile, other

features, such as secondary structure and solvent accessibility, are

evaluated in the alignment procedure. We built PROSPECT II-

compatible templates from the SCOP 1.73 database of protein

structures [11] (95% sequence similarity filter: N,15,000). The

pipeline performs three PROSPECT II passes. In the first pass, a

search is performed against all of the SCOP templates. In the

second pass, the top-ranked templates (based on a support vector

machine-estimated score) are threaded using a more definitive, but

costlier, Z-score procedure. In the final pass, templates with the

top-ranked Z-scores are threaded using the pairwise interaction

option. Finally, Nest is used to build models from the alignments

that pass a certain threshold of fold confidence. Fold confidence is

computed via an analytical fit to the data points in the table of the

original PROSPECT II article [34]. Even with solid confidence

scores, 3-D structural models generated by fold recognition will

often have quality issues because of slight errors in the template

alignment in addition to the loop region problem discussed earlier.

The template-based models resulting from the comparative

modeling and fold recognition modules are scored with two

procedures. The first scoring program is an in-house implemen-

tation of the DFIRE-AA all-atom statistical potential [35]. This

potential is derived from an analysis of the inter-atomic distances

between pairs of atom types in a large set of known protein

structures. The second scoring module first minimizes the model

with MMTSB [36] and CHARMM [37] using the PARAM22

[38] all-atom force field and a distance-scaled electrostatic

potential with a dielectric constant equal to 4 [39]. The minimized

structure is then scored using the PARAM22 force field with the

GBMV2 implicit solvent potential [13,40] and a surface area-

based non-polar term. The CHARMM-based scoring module is

only available with an academic CHARMM (or commercial

CHARMm) license and thus is an optional, albeit valuable,

component. The DFIRE-AA and PARAM22/GBMV2 (GB22)

scores are output as the raw score divided by the number of

residues in the model. This formula is a simple, though imperfect,

way to compensate for different-sized models.

If a domain level sequence is too distant from known folds,

template-based modeling is no longer a viable option. In this case,

the pipeline calls ab initio folding, which uses the popular

RosettaAbInitio program from the Baker laboratory [41]. The

RosettaAbInitio procedure begins by constructing a library of

three- and nine-residue fragments from PDB structures with

similar sequences, secondary structures, and profiles as stretches of

the query sequence. Rosetta assembles these fragments into full-

sized protein backbone models using various energy terms and

filters. Because the internal united-residue energy function is often

unable to discriminate near-native models, the models must be

ranked via a post-process. While newer versions of Rosetta offer

side chain packing, minimization, and scoring, our pipeline uses its

own post-processing algorithm. First, all-atom models are

generated by building the side chains onto each backbone model

using SCWRL3 [42]. Next, the all-atom models are scored by our

in-house implementation of DFIRE-AA [35]. Finally, the top

DFIRE-scoring models are minimized and scored using

CHARMM, as described above.

Rosetta has been successfully used in remote fold recognition

and annotation for genome- scale applications [1,43]. To classify

and annotate the folds of the models that result from the Rosetta

code, the structures of the top few models are compared against

ASTRAL PDB-style coordinates of the SCOP 1.73 fold library

[11] using CE [44]. The top CE matches ranked by Z-score are

listed in the output along with the SCOP annotations. If

CHARMM is not present on the computer system, the top

models as scored by DFIRE are selected instead. The pipeline can

parallelize this module over multiple processing cores using the

MPI compilation of Rosetta and the Pipeman job distribution tool

for the post-processing steps.

Output formats
As the software evolved, several output options in different

formats were developed. The first format is a text-based human-

readable output. Hypertext markup language (HTML) output is

also available and incorporates a query-template sequence

alignment view as well as DFIRE and GB22 scores. Web pages

are organized by a hyperlinked directory tree. In addition, tab-

delimited output, containing much of the same information as in

the HTML output, is generated so that users can import

annotation results into spreadsheet applications.

Results and Discussion

In this section, we demonstrate an application of our pipeline

for large-scale protein structure prediction. Then, we show the

value of the scoring schemes implemented in our pipeline. Next,

we discuss the performance of the pipeline in the CASP7

competition. In addition, we discuss ongoing biological applica-

tions using the pipeline. Finally, we discuss computational time

and scaling issues.

To demonstrate the use of the pipeline for large-scale

processing, we performed structural annotation of the variola

(smallpox) virus genome [45–48], which consists of 197 protein-

coding genes. A summary of the results for this run is presented in

Table 2. For roughly 10% of the proteins, homology models were

produced that might be suitable for drug design (i.e., .50%

sequence similarity to a known protein structure). We present the

results for three variola proteins, which are all labeled ‘‘hypothet-

ical,’’ to show the various outcomes of the prediction workflow

(Fig. 1). Figure 2 shows the HTML output for NP_042212.1, one

of the variola proteins for which a reasonable comparative model

could be built. The top model has a 44.4% sequence identity to

the known structure of mouse protein guanylate kinase (PDB ID:

1LVG). The GB22 and DFIRE energy scores of the top model

were also the highest in rank versus the other comparative models

Protein Structure Prediction
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generated. Note that in the HTML output, the index column is

hyperlinked to the comparative model in PDB format, if a model is

predicted.

For the protein domains in the variola genome that did not have

homologous PDB structures, fold recognition was automatically

called. An example of a positive fold result is shown in Fig. 3.

Variola protein NP_042071.1 can be aligned to two SCOP fold

templates with confidence scores .50%. Thus, for these two

templates, structural models were produced.

Perhaps typical of viral genomes, less than half of the proteins

encoded by the variola genome could be structurally characterized

using either homology modeling or fold recognition. Consequent-

Table 2. Summary statistics for template-based structure prediction of the proteins encoded by the variola (smallpox) genome
using the pipeline.

No. of Proteins No. of Domains

Total queries 197 355

Sequence similarity to a PDB structure

.90% 12 (6%) 20 (6%)

Between 50% and 90% 8 (4%) 14 (4%)

Between 30% and 50% 11 (6%) 15 (4%)

Fold recognition (,30% sequence similarity to PDB)

.90% confidence 32 (16%) 39 (11%)

Between 50% and 90% confidence 21 (11%) 29 (8%)

,50% confidence 113 (57%) 238 (67%)

doi:10.1371/journal.pone.0006254.t002

Figure 2. Screenshot of the pipeline-rendered comparative modeling results in hypertext markup language (HTML) format for
variola protein NP_042212.1. Color-coding for the amino acid letters is as follows: red, acidic; blue, basic; green, polar; and black, apolar.
doi:10.1371/journal.pone.0006254.g002
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ly, comprehensive analysis of this genome requires that a large

number of the domains be processed via the computationally

intensive ab initio method. For example, fold recognition on variola

protein NP_042054.1 did not identify any template with more

than 50% confidence. Figure 4 shows the partial HTML output of

an ab initio run on this protein. Z-scores, computed via CE, that are

.5 are considered to be matches at the superfamily level [44]. The

top-scoring ab initio model (energy rank = 1) structurally aligns with

a membrane-bound chloride channel and several all-a-helical

protein folds. Sequence property predictions for this protein

sequence are shown in Fig. 5 (truncated at 120 residues for display

purposes). The output includes predictions of transmembrane

helices, disorder, secondary structure, and solvent accessibility

aligned with the query sequence. Most notably, a membrane-

bound fold can tentatively be ruled out because TMHMM did not

predict any regions of transmembrane helices.

The use of energetic scoring functions, such as DFIRE-AA

and GB22, in template-based modeling improves the chances of

detecting the most accurate model [49]. As a test case, we

predicted 224 all-atom comparative models for the a-spectrin

SH3 domain (sequence derived from PDB ID: 1SHG) using

only homology modeling. As shown in Fig. 6a, the highest

sequence homology hits correctly produced the most accurate

Nest-built models. However, suppose that there were no

templates with .90% sequence identity. In this thought

experiment, percent identity appears to be a poor determinant

of model accuracy as measured by the root mean squared

deviation (RMSD) of the Ca-trace between the native X-ray

structure and the model (Ca RMSD). On the other hand, the

DFIRE-AA and GB22 functions (Fig. 6, b and c) show scoring

funnels [13] for this query sequence, i.e., as the score improves,

so does the model accuracy. Therefore, if only lower sequence

Figure 3. Screenshot of the pipeline-rendered fold recognition results in HTML format for variola protein NP_042071.1. This picture
truncates the alignment after the first block of 60 residues.
doi:10.1371/journal.pone.0006254.g003

Figure 4. Screenshot of the pipeline-rendered SCOP annotations derived from the ab initio results in HTML format for variola
protein NP_042054.1. The full output (not shown) includes a total of 5 models (ranked by GB22 energy) and the top 10 SCOP matches for each
model.
doi:10.1371/journal.pone.0006254.g004
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identity templates were available, these two scoring functions

could aid in selecting the most accurate model.

We participated in the CASP7 experiment in 2006 using an

older version of the pipeline and submitted 408 3-D models for

92 targets. Our overall performance ranked in the middle of the

130 participating groups. The noteworthy successes were that

one of our homology model predictions and one of our ab initio

predictions ranked no. 1 in the ‘‘Top 1’’ model category, as

measured by the global distance test [50]. We attribute these

two cases to the use of the GB22 and DFIRE-AA scoring

functions. Our modest performance could be attributed to our

lack of advanced loop modeling capabilities or alignment

optimization [49] and our reliance on single-template models.

Also, at the time, we did not have the domain recognition

algorithm FIEFDom to break larger query sequences into more

manageable chunks. Regardless, the performance of our

standalone pipeline will only improve as new downloadable

technologies are shared by research laboratories with the larger

community.

Users of the pipeline are currently applying the ab initio

component to deduce the function of several proteins encoded

in virus genomes, including the VP24 protein of Ebola and

Marburg viruses [51]. In addition, they are using the pipeline in

proteomic surveys of the Escherichia coli and Yersinia pestis genomes

to determine which protein structures can be built by homology,

such that protein-protein interactions can be modeled. In addition,

the pipeline is helping researchers infer the functions of proteins

that, up to now, have been labeled as ‘‘hypothetical.’’

It is worth discussing the computational effort of the homology

modeling and fold recognition run on the variola genome. While

running in parallel on 64 Xeon 3.0-GHz cores, the pipeline

required, on average, nearly 4 CPU-hours per domain when

utilizing a shared file system. In contrast, repeating the same

calculations using the hard drives of the local nodes instead

averaged a much more reasonable ,1 CPU-hour per domain. We

believe that most of the performance degradation on the shared

file system can be attributed to PROSPECT II, which uses

frequent I/O operations of opening and closing ,15,000 template

and temporary output files for each domain. One solution we are

considering is switching to the newly available open-source fold

recognition program OpenProspect [38] and modifying it so that it

processes large blocks of templates at a time.

In comparison, an ab initio run scales well up to 32 processing

cores (results not shown). While the Rosetta-MPI component

scales almost linearly up to 64 cores, too many simultaneous

instances of the structural CE-based similarity search over a

shared file system leads to asymptotic limits in speedup. Similar

to the situation with PROSPECT II templates, copying the

SCOP fold database to the hard drives of the local computing

nodes improves parallel performance, albeit with a trade-off of

some wall-clock time for copying the database files from shared

to local file systems.

Conclusions
We have introduced a standalone, Perl-based pipeline for

protein structure prediction that integrates freely downloadable

software components from various academic and government

research laboratories. Unlike Web services, which either limit the

number of query sequences for processing or perform only a

limited subset of prediction techniques, our pipeline allows

researchers to harness the power of their own computational

resources to perform protein structure predictions at the genomic

level. Salient features of our structure prediction software include

all-atom scoring, structural annotation of de novo models,

annotations and sequence alignments in HTML format, and an

MPI-parallel framework for large-scale studies.

Availability and Requirements

N Project name: Protein Structure Prediction Pipeline

N Project download page: http://www.bhsai.org/structure2.
html

N Operating system: Linux

N Programming languages: Perl5, tcsh, and C++

Figure 5. Screenshot of the pipeline-rendered HTML output showing predicted sequence properties for variola protein
NP_042054.1. i, intracellular; D, disordered; H, helix; E, strand; B, buried.
doi:10.1371/journal.pone.0006254.g005
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