
  

  

Abstract—Most high-throughput experimental results of 
protein-protein interactions (PPIs) are seemingly inconsistent 
with each other. In this article, we re-evaluated these 
contradictions within the context of the underlying domain-
domain interactions (DDIs) for two Escherichia coli and four 
Saccharomyces cerevisiae PPI datasets derived from high-
throughput (yeast two-hybrid and tandem affinity purification) 
experimental platforms. For shared DDIs across pairs of 
compared datasets, we observed a remarkably high pair-wise 
correlation (Pearson correlation coefficient between 0.80 and 
0.84) between datasets of the same organism derived from the 
same experimental platform. To a lesser degree, this 
concordance also held true for more general inter-platform and 
intra-species comparisons (Pearson correlation coefficient 
between 0.52 and 0.89). Thus, although varying experimental 
conditions can influence the ability of individual proteins to 
interact and, therefore, create apparent differences among 
PPIs, the physical nature of the underlying interactions, 
captured by DDIs, is the same and can be used to model and 
predict PPIs. 

I. INTRODUCTION 
Protein-protein interaction (PPI) networks represent 

complex molecular relationships that broadly determine the 
activity of a functional cell. A comprehensive and accurate 
definition of various interactomes would, therefore, have 
enormous implications toward the understanding of cellular 
functions. In the past decade, high-throughput experiments 
to determine PPIs have been extensively pursued, buoyed by 
the introduction of yeast two-hybrid (Y2H) screens [1]. 
However, it is now well known that individual Y2H screens 
have low concordance with each other. 

Recently, tandem affinity purification followed by mass 
spectrometry (AP-MS) techniques have been proposed as a 
new method to derive high-throughput PPI complexes [2]. 
Several PPI datasets based on the TAP-MS methodology are 
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now publicly available. However, these datasets also record 
remarkably low overlap; only 209 interactions of a joint total 
of 15,810 interactions are shared. 

In this article, we re-evaluated the consistency among PPI 
networks derived from both Y2H and TAP-MS experimental 
platforms in two organisms, E. coli and Saccharomyces 
cerevisiae, using protein domains. We considered the 
physical binding that occurs in a PPI as arising from 
interactions between domains and not the whole proteins per 
se. Therefore, we systematically broke down all proteins into 
domains and analyzed PPIs via domain components. In 
effect, the PPI data were converted into a set of domain-
domain interactions (DDIs). The frequency of occurrence of 
domain pairs allowed us to estimate the propensity of 
domain interactions (association scores), and the resulting 
DDI profiles of association scores allowed us to evaluate the 
inherent similarities among sets of PPIs. By quantifying the 
similarity between DDI profiles, we demonstrated a 
significant, and perhaps underappreciated, coherence among 
the seemingly incoherent PPI datasets. Thus, even though 
pairs of datasets were highly discordant in terms of PPIs, the 
corresponding DDIs were highly consistent. Our findings 
have important implications in the perception of high-
throughput PPI experiments and their application toward 
delineating an accurate and comprehensive picture of the 
interactome. 

II. METHODS 
In this section, we briefly describe our approach to 

compare six high-throughput PPI datasets: two TAP-MS 
datasets for each of E. coli and S. cerevisiae, and two Y2H 
datasets for S. cerevisiae. To gauge the similarity of the 
underlying interactions in these datasets, we compared the 
DDI profiles between datasets. 

A. PPI Datasets 
We studied four datasets based on the TAP-MS 

experimental procedure: two E. coli datasets, described by 
Arifuzzaman et al. [3] and Butland et al. [4], and two S. 
cerevisiae datasets, described by Krogan et al. [5] and Gavin 
et al. [6]. In addition, we studied two datasets based on Y2H 
screens for S. cerevisiae, described by Uetz et al. [7] and Ito 
et al. [8], which were retrieved from the IntAct database [9]. 

To allow comparisons between different datasets, all 
protein identifiers for E. coli were converted into Swiss-Prot 
identifiers [10] (October 10, 2007 freeze) and all protein 
identifiers for S. cerevisiae were converted into open reading  
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TABLE 1. STATISTICS OF SUPERFAMILY DOMAIN DISCOVERY IN PROTEINS FROM DIFFERENT PPI DATASETS 
 

Organism/Platform/Dataset Number of 
Proteins 

Number of 
Interactions 

Number of 
Proteins with 

Domains, n(%) 

Number of 
Distinct 
Domains 

Number of 
Domains per 

Protein 
S. cerevisiae/Y2H/Uetz 1,315 1,389    795(60) 333 1.27 
S. cerevisiae/Y2H/Ito 3,241 4,367 1,792(55) 553 1.27 
S. cerevisiae/TAP-MS/Gavin 1,441 6,918 1,049(73) 438 1.47 
S. cerevisiae/TAP-MS/Krogan 2,694 7,089 1,502(56) 502 1.39 
E. coli/TAP-MS/Arifuzzaman 2,942         11,161 1,969(67) 658 1.41 
E. coli/TAP-MS/Butland 1,158 4,858     828(72) 475 1.52 

Y2H, yeast two-hybrid screen; TAP-MS, tandem affinity purification followed by mass spectrometry. 
 

frame identifiers using the Saccharomyces Genome 
Database [11]. Table 1 shows the number of proteins and 
interactions of the six PPI datasets after the removal of self-
interactions and duplicate interactions. We did not 
distinguish interactions between the same pair of proteins 
but with different bait/prey roles and considered such 
interactions as a single interaction. 

B. Domain Annotation 
The downloaded protein sequences were scanned for 

Superfamily (version 1.69) [12] domains using the default E-
value cutoffs of 0.02 implemented in InterPro (version 17.0) 
[13]. We used the high-performance computing pipeline for 
protein function annotation (PIPA) [14] to perform these 
computations. 

C. Construction and Comparison of DDI Profiles 
For a given pair of domains x and y, their association 

score (Axy) was defined as the ratio of the number of 
observed interacting protein pairs containing domains x and 
y (Oxy) and the number of all possible protein pairs 
containing domains x and y (Pxy) [15], as follows: 

.
xy

xy
xy P

O
 A =

                                    
(1) 

The association score Axy was calculated for all possible 
pairs of domains of each dataset, and provided an empirical 
measure of the likelihood of two proteins to interact given 
that each protein contained one of the two domains. For a 
given dataset, each domain pair that was not observed in 
interacting protein pairs was assigned an association score of 
zero for that dataset. The matrix of association scores from 
Equation 1 constituted the DDI profile that was used to 
compare two PPI datasets. 

We evaluated the concordance between any two DDI 
profiles by computing the Pearson correlation coefficient (r 
value) between the association scores Axy for the set of 
domain pairs (x, y) in the two profiles. Because PPI datasets 
provide only positive instances of interactions and are 
largely incomplete, it was not possible to compute an 
“unbiased” correlation between the corresponding DDIs. 
Here, we use the term “unbiased correlation” to mean the 
correlation coefficient that would have resulted if an 
association score could be assigned to each pair of domains 
in both datasets, i.e., if there were no missing data. Since PPI 
datasets are largely incomplete, we estimated a range of 
correlations based on two different criteria for including 

domain-domain association scores in the computation. In 
criterion I, we only computed correlations for scores of Axy > 
0 in both DDI profiles being compared. Axy = 0.0 in a given 
profile implied that domains x and y were not observed to 
interact in the particular dataset. Hence, the correlation 
coefficients attained under criterion I provided a measure of 
consistency between shared or commonly observed DDIs in 
two independent PPI datasets. In criterion II, we additionally 
considered association scores of Axy = 0 in one of the profiles 
as long as both domains x and y were observed in the dataset 
and Axy > 0 in the other profile. Criterion II represented the 
case where the interaction of a particular pair of domains x 
and y was observed exclusively in one dataset but the two 
domains were observed, albeit not interacting, in the other 
dataset. The correlation coefficients computed based on 
criterion II amplified the inconsistencies between the 
datasets. Notwithstanding the lack of a true gold standard for 
either PPIs or DDIs, these correlation coefficients provided a 
range of similarities based on the observed interactions. 

III. RESULTS 
In this section, we present the results of our domain-level 

evaluations of the six PPI datasets. We estimated the 
correlation coefficients between DDI profiles for different 
pairs of datasets to gauge the consistency of different 
datasets when analyzed at the domain level. 

A. PPI Datasets and Their Overlap 
The overlap between the three pairs of datasets 

corresponding to the same species and the same 
experimental platform (S. cerevisiae PPIs determined using 
Y2H, S. cerevisiae PPIs determined using TAP-MS, and E. 
coli PPIs determined using TAP-MS) revealed that, despite 
the large number of shared proteins between datasets, the 
actual number of shared PPIs was low. The Venn diagrams 
in Figure 1 show protein and PPI overlaps between the pairs 
of compared datasets. In all instances, even though a large 
fraction of proteins was common to both datasets, the 
overlap between interactions was low. 

However, even within this small shared set of interactions, 
we observed biologically relevant and verifiable interactions. 
Figure 2 shows the sub-network containing only the 
interactions that were shared in the two 
(Butland/Arifuzzaman) E. coli PPIs determined using the 
TAP-MS technique. The complex highlighted in red 
identified the interaction map consisting of a number of 
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Figure 1: Shared proteins (left) and shared interactions (right) between the 
two Escherichia coli (top) and four Saccharomyces cerevisiae (bottom) 
protein-protein interaction (PPI) datasets. The Venn diagrams are not drawn 
to scale. 

 

 
 

Figure 2: Protein-protein interactions (PPIs) shared by both the Butland and 
Arifuzzaman datasets in E. coli using TAP-MS revealed two biologically 
relevant PPI sub-networks. The first network, highlighted in red, 
corresponded to RNA polymerase subunits (rpoZ, rpoH, rpoB, rpoC, rpoA, 
rpoN, and rpoD). The second, slightly dispersed network, highlighted in 
blue, was composed of ribosomal proteins (rpsD, rpsE, rpsS, rpsA, and 
rpsI). Also, the chaperone/heat shock proteins groL and dnaK, highlighted 
in green, exhibited high connectivity or the ability to interact with many 
other proteins. 

subunits of RNA polymerase. Another sub-network, 
highlighted in blue, shows interactions between ribosomal 
proteins that are known to interact with each other and form 
the functional ribosome during protein translation. Also, in 
agreement with other PPI datasets [9, 16, 17], the 
chaperone/heat shock proteins groL and dnaK, highlighted 
in green, exhibited high connectivity or the ability to interact 
with many other proteins. 

B. Domain Discovery Statistics 
Table 1 shows the statistics of the domains identified in E. 

coli and S. cerevisiae. On average, 64% of proteins had 
Superfamily domains. We also observed a higher number of 
domains per protein in the TAP-MS datasets for both S. 
cerevisiae and E. coli compared with the S. cerevisiae Y2H 
datasets, suggesting a relative bias in the TAP-MS 
experiments toward evaluating multi-domain proteins 
compared with the Y2H experiments. 

C. Correlation With DDI Profiles 
We computed DDI profiles using Superfamily domain 

definitions for each of the six PPI datasets. Table 2 shows 
the r values and the associated P-values for the 15 possible 
pair-wise comparisons between the 6 datasets. Using 
criterion I, we assumed that domain interactions observed in 
only one of two datasets being compared were false 
observations and exclusively compared DDIs that were 
shared between datasets. This scenario considered a smaller 
number of interactions (N) and led to higher correlations. 
The top panel in Table 2 shows the r values obtained with 
criterion I. We observed high r values (0.52 ≤ r ≤ 0.89) for 
all intra-species comparisons (unshaded cells), indicating 
that the binding propensities observed in different 
experimental techniques were comparable with each other. 
The r values were consistently high (0.80 ≤ r ≤ 0.84) for 
intra-species comparisons with the same experimental 
technique (marked in bold). For inter-species comparisons 

(shaded cells), the results obtained with the TAP-MS 
technique indicated good levels of correlation (0.42 ≤ r ≤ 
0.73). Similar comparisons between S. cerevisiae Y2H and 
E. coli TAP-MS techniques were inconclusive (Table 2). 
The high correlation values obtained when using criterion I 
were not an artifact of special cases where a DDI occurs 
only once in both datasets, i.e., Oxy = 1 and Pxy = 1 in both 
profiles. Very few such cases were observed, and when these 
DDIs were excluded from the datasets we observed very 
similar r values (results not shown). 

Criterion II necessarily considered a larger number of 
domain interactions (N) and yielded a smaller correlation 
than criterion I, because the zero and the corresponding non-
zero association scores were included in the computation of 
the r values. As shown in the bottom panel in Table 2, 
criterion II yielded weak correlations between the S. 
cerevisiae DDIs derived from the same experimental 
technique (marked in bold). All other comparisons indicated 
a lack of correlation. These results represented the lower 
range of the correlations between DDI profiles.  

We repeated these analyses using Pfam (version 21.0) 
[18] domain annotations of the proteins in the PPIs instead 
of Superfamily domains and obtained very similar trends in 
the correlations (results not shown). 

Given the perceived notion that high-throughput 
measurements of PPIs tend to be biased and, in general, 
unreliable due to the low concordance between different 
datasets, the analyses here showed a potentially higher 
concordance by analyzing the interactions in terms of DDIs 
instead of PPIs. Irrespective of the experimental biases, the 
DDI analysis was able to cut through some of the underlying 
inconsistencies and expose an inherent propensity for certain 
types of domains to associate with each other. The DDI 
profiles can be downloaded from http://bhsai.org 
/downloads/ddi_profiles.
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TABLE 2. PEARSON CORRELATION COEFFICIENTS, CORRESPONDING P-VALUES, AND NUMBERS OF CONSIDERED SUPERFAMILY DDIS FOR EACH OF THE 15 
POSSIBLE PAIR-WISE COMPARISONS BETWEEN THE 6 DATASETS 

 

Organism/Platform/Dataset 
S. cerevisiae 

Y2H/Ito 
 r       P       N 

S. cerevisiae 
TAP-MS/Gavin 

r           P          N 

S. cerevisiae 
TAP-MS/Krogan 
r          P        N 

E. coli 
TAP-MS/Arifuzzaman 

 r            P          N 

E. coli 
TAP-MS/Butland 
r           P           N 

Criterion I 
S. cerevisiae/Y2H/Uetz 0.84     P*    144 0.89       P*       143 0.52        P*     149  0.32      1.3e-2         61  0.06    6.6e-1          49 
S. cerevisiae/Y2H/Ito  0.87      P*        229 0.86        P*     247  0.66           P*      194  0.35    8.6e-5        121 
S. cerevisiae/TAP-MS/Gavin   0.80        P*     795  0.42           P*      535  0.52        P*        464 
S. cerevisiae/TAP-MS/Krogan     0.70           P*      430  0.73        P*        329 
E. coli/TAP-MS/Arifuzzaman      0.80        P*     1,396 

Criterion II 
S. cerevisiae/Y2H/Uetz  0.13     P*  1,252 -0.09   3.8e-4   1,556 -0.10   8.8e-5  1,583 -0.09    2.7e-4       1,685 -0.14       P*      1,111 
S. cerevisiae/Y2H/Ito  -0.01   7.3e-1   3,255 -0.07   1.1e-4  2,954 -0.08         P*      4,369 -0.14       P*      2,948 
S. cerevisiae/TAP-MS/Gavin    0.18       P*   4,217 -0.11         P*      5,468 -0.17       P*      3,795 
S. cerevisiae/TAP-MS/Krogan    -0.05    6.3e-5       5,383 -0.10       P*      3,692 
E. coli/TAP-MS/Arifuzzaman     -0.12       P*      1,400 

r, Pearson correlation coefficient; N, number of considered Superfamily domain-domain interactions (DDIs). Criterion I only considered DDIs that were 
observed in both datasets. Criterion II considered DDIs that were observed in only one dataset as long as the involved domains were observed in the other 
dataset. Intra-species and intra-platform correlations are shown in bold, whereas inter-species comparisons are shown by shaded cells. P* denotes 
P ≤ 1.0e-5 

IV. DISCUSSION AND CONCLUSIONS 
High levels of incoherence among PPIs of the same 

organisms have been documented in multiple studies 
involving high-throughput experimental techniques. 
Technological advancements have not resolved such 
inconsistencies. In this article, we demonstrated that, even 
though different high-throughput experimental 
determinations of PPIs were seemingly inconsistent with 
each other in terms of common interactions, there was a 
significant similarity at the level of DDIs. When considering 
only those DDIs that were observed in both datasets being 
compared, we observed a remarkably high pair-wise 
correlation (0.80 ≤ r ≤ 0.84) between datasets derived from 
the same experimental platform (TAP-MS or Y2H) on the 
same organism (E. coli or S. cerevisiae). To a lesser degree, 
this concordance held true even for inter-species 
comparisons between E. coli and S. cerevisiae PPIs based on 
the same TAP-MS experimental platform. However, 
different studies identified largely different sets of DDIs. 
Therefore, the correlation between DDI profiles was lost  
upon the inclusion of non-shared (as in criterion II) DDIs for 
all such comparisons except for those involving S. cerevisiae 
DDIs derived from the same experimental platform, which 
showed a weak but statistically significant correlation. 

We further noted that a large fraction of PPIs evaded 
DDI-based modeling due to a lack of domain annotation in 
the involved proteins. To address this limitation, a more 
comprehensive and consistent annotation of domains is 
needed. 
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