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A Real-Time Algorithm for Predicting Core
Temperature in Humans

Andrei V. Gribok, Mark J. Buller, Reed W. Hoyt, and Jaques Reifman

Abstract—In this paper, we present a real-time implementation
of a previously developed offline algorithm for predicting core tem-
perature in humans. The real-time algorithm uses a zero-phase
Butterworth digital filter to smooth the data and an autoregressive
(AR) model to predict core temperature. The performance of the
algorithm is assessed in terms of its prediction accuracy, quan-
tified by the root mean squared error (RMSE), and in terms of
prediction uncertainty, quantified by statistically based prediction
intervals (PIs). To evaluate the performance of the algorithm, we
simulated real-time implementation using core-temperature data
collected during two different field studies, involving ten differ-
ent individuals. One of the studies includes a case of heat illness
suffered by one of the participants. The results indicate that al-
though the real-time predictions yielded RMSEs that are larger
than those of the offline algorithm, the real-time algorithm does
produce sufficiently accurate predictions for practically meaning-
ful prediction horizons (∼20 min). The algorithm reached alert
(39 ◦C) and alarm (39.5 ◦C) thresholds for the heat-ill individual
but did not even attain the alert threshold for the other individuals,
demonstrating the algorithm’s good sensitivity and specificity. The
PIs reflected, in an intuitively expected manner, the uncertainty as-
sociated with real-time forecast as a function of prediction horizon
and core-temperature variability. The results also corroborate the
feasibility of “universal” AR models, where an offline-developed
model based on one individual’s data could be used to predict any
other individual in real time. We conclude that the real-time im-
plementation of the algorithm confirms the attributes observed in
the offline version and, hence, could be considered as a warning
tool for impending heat illnesses.

Index Terms—Autoregressive (AR) models, core-temperature
predictions, real-time prediction.
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I. INTRODUCTION

A LTHOUGH heat illnesses are presumably preventable,
they are difficult to predict because in some circumstances,

such as at the height of a military operation or during an ath-
letic competition, humans may ignore early warning signs of a
rising core temperature and impending heat illnesses [1]. Dif-
ferent heat strain indexes have been proposed to evaluate an
individual’s susceptibility to heat stress [2], [3]; however, they
lack predictive capabilities and can only evaluate the current
physiological state of the individual when it is already too late
for proactive response.

In our previous work [4], [5], we showed that, due to the
large thermal inertia of the human body, the core temperature
in humans can be accurately predicted with an autoregressive
integrated (ARI) model for up to 20 min ahead of time. The
20-min-ahead prediction horizon is long enough to be practi-
cally useful in an early warning system that could be worn by
athletes and soldiers to forecast rising core temperatures during
intense physical activity in hot-weather conditions. However,
this relatively long prediction horizon was obtained using core-
temperature data that had been smoothed offline by a global
filtering technique, which requires the availability of the entire
time-series dataset. Obviously, such requirement is not met in
real-time applications, where future core-temperature data are
unknown and only current and previous values are available.
In addition, the global filtering technique relies on regularized
differentiation of the core-temperature data, which is computa-
tionally intensive and may be beyond the computational power
of wearable devices.

In this paper, we describe an algorithm for predicting core
temperature in real time and investigate its performance against
the offline version. We extended our earlier work to include a
real-time filtering technique that is less computationally de-
manding and an AR model that, unlike ARI models, does
not require differentiation. The main reason for applying ARI
models for time-series predictions is to handle nonstationar-
ity arising from variations of the signal’s statistics. Although
the offline version of the algorithm uses first-order differen-
tiation of the core-temperature signal to ensure mean-value
stationarity, after additional investigations, we found that the
low-order statistics of the core-temperature signal, such as the
mean value and the autocorrelation function, exhibited very
mild variations with respect to time. Most likely, this is be-
cause the core-temperature signal is a physiologically very
tightly regulated signal, with low-order statistics that remain
practically unchanged through time. Comparison of ARI and
AR models for real-time predictions showed no additional
benefits for using the more complicated ARI model. In this
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study, we used AR models for both offline and real-time
predictions.

In addition to point predictions, we also estimated prediction
intervals (PIs) based on a previously developed algorithm [5]
to provide a measure of reliability of the point predictions in
real time. Several tests with field-study data involving military
activities, including a case in which one subject’s core temper-
ature reached a critical threshold, indicate that the algorithm’s
real-time performance degrades in comparison with its offline
version. However, the algorithm is still a valuable tool, provid-
ing real-time point predictions and associated PIs that could be
used as an early warning of impending heat illnesses.

II. METHODS

The real-time core-temperature prediction algorithm consists
of two main components: data filtering and predictive model.
The data filtering component was implemented using a But-
terworth zero-phase, low-pass filter of order five with a cutoff
frequency of 4.25 × 10−4 Hz. The cutoff frequency was se-
lected based on the analysis of the power spectrum of the core-
temperature signal such that approximately 99% of the signal’s
variance was contained in the range below the cutoff frequency.
The Butterworth filter was selected instead of other alternatives
because it has the flattest response in the pass band, thus, pro-
ducing smooth signals that can match the smoothness of the
regularized signals in the offline version of the algorithm. To
eliminate the phase shift between the raw and the filtered sig-
nals introduced by the Butterworth filter, we applied a forward–
backward filtering technique [6] in which the raw signal was
first filtered forward in time and then the same filter was applied
backwards to the forward-filtered signal.

The low-pass filter is often coupled with data downsampling
to reduce the Nyquist frequency of the signal. The sampling fre-
quency of the core-temperature signal, recorded by a telemetry
core-temperature pill, is one sample per minute. This sampling
frequency is rather high because the metabolic processes gov-
erning the changes in core temperature occur at much longer
time scales. To remove the high-frequency noise introduced
by the short-sampling interval, the core-temperature signal was
first downsampled to 5-min intervals by keeping only every
fifth-sampled signal, before applying the low-pass filter.

A Butterworth filter uses previously filtered and raw (i.e.,
unfiltered) signals to produce a filtered signal ỹt at time t

ỹt =
n∑

i=0

θiyt−i −
n∑

j=1

ϕj ỹt−j (1)

where yt denotes the raw signal at time t, n denotes the order of
the filter, and θ and ϕ represent the vectors of filter coefficients.
As each new core-temperature sample yt became available at
time t, it was incorporated into the vector of core-temperature
samples, and the filter was iteratively applied to the entire time
series, first forward, from the first sample to the last sample at
time t, and then backward to the first sample. The forward–
backward filtering requires the availability of an initial batch of
signal samples because it uses the information of the flanking
samples to compensate for the phase shift. For real-time appli-

cations, this means that there will be an initial “waiting” period,
with length equal to the order of the model, before the filter and
the predictive model can be applied. During this waiting period,
we used raw, unfiltered core-temperature values to represent
ỹt−j in (1). We also assumed that the time required to filter the
data was negligible when compared with the sampling interval.

We used an AR model of order m to make near future core-
temperature predictions. Given filtered signals ỹt−i , i = 0, . . . ,
m − 1, an AR model produces an output or predicted signal
ˆ̃yt+1 , at time t + 1, through a linear combination of the an-
tecedent, filtered core-temperature samples

ˆ̃yt+1 =
m∑

i=1

bi ỹt−i+1 + εt+1 (2)

where b denotes the vector of m unknown AR coefficients and
εt+1 represents white noise with unknown variance. To make
predictions M time steps ahead, we iteratively used (2) M times,
substituting the unobserved signals at t ≥ (t + 1) in the sum-
mation by their corresponding predicted values. As discussed
earlier, the order of the model m specifies the required initial
waiting period for which data samples need to be collected be-
fore real-time predictions can be made.

Before applying the AR model, we must first determine the
AR coefficients b using some “training” data. In our earlier
work [4], we identified a remarkable property of ARI models
for core-temperature predictions in which models trained for
one individual can be applied to predict the temperature of other
individuals provided the individuals have similar anthropomor-
phic characteristics and the training data are representative of
the range of activities under which the model is applied. Accord-
ingly, these so-called “universal” or “portable” models offer the
possibility of using data from only one individual to train an AR
model offline to determine the coefficients b, and subsequently
applying the model to predict all other individuals in real time.
To smooth the training data employed to develop the univer-
sal model, we applied the same Butterworth filter as the one
subsequently used in real-time predictions for the entire train-
ing data, resulting in core-temperature samples that were more
correlated with each other than the samples of the original raw
signals. Although samples that are more correlated are easier
to predict, the higher correlation also causes the design matrix
of the least squares (LS) method used to determine the coeffi-
cients b to become ill-conditioned, yielding models with large
variance. To alleviate this problem and obtain consistent AR
coefficients, we extended the LS method by adding a penalty
function and solving a regularized LS problem [4], [7].

The inclusion of a penalty function in the solution of a regular-
ized LS problem has implications in the selection of the order m
of the AR model. Because regularization constrains the values
of the coefficients bi , i = 1, 2, . . . , m, well-established criteria
for selecting the order of an AR model, such as the Akaike infor-
mation criterion [8], are not applicable, as the fitting error may
not decrease with the increasing model order. This fact allows
the use of regularized models of higher order without overfit-
ting concerns. The advantage of using a higher order model is
that it accommodates higher frequencies present in the signal,
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thus reducing prediction lag. Here, we tried models of different
orders, however, the lower-order models inevitably introduced
more lag in the predicted signal. The selected model of order
m = 25 represents an empirically obtained compromise be-
tween a reduction in prediction lag and a minimization of the
waiting period.

A fundamental difference between offline and real-time pre-
dictions lies in the way the testing data are filtered. For the offline
predictions in our earlier work [4], the entire testing data are fil-
tered using regularized differentiation of the core-temperature
signal. For real-time predictions, the Butterworth filter can only
use the testing data up to the current time, making it difficult
for the filter to accurately smooth the most recent data sam-
ples, which carry the majority of the predictive information.
Such filtering inaccuracy leads to less consistent and delayed
predictions.

The application of the AR model for predictions was identical
for both offline and real-time implementations. For all simula-
tions, the prediction horizon, unless otherwise noted, was set
to 20 min, and the prediction accuracy was evaluated using the
root mean squared error (RMSE), defined as

RMSE =

√√√√ 1
N

N∑
i=1

(ˆ̃yi − ỹi)2 . (3)

We chose to compute the RMSE between the predicted ˆ̃y and
the filtered signal ỹ, as opposed to the raw and unfiltered signal
y, because y was laden with noise and outlier values [4], which
would have yielded artificially large RMSEs.

In many safety-critical applications, providing single-point
predictions may not be sufficient. A measure of the reliability
of the point predictions may be required to assess the uncer-
tainty of the predicted values. In earlier work [5], we developed
a technique based on the statistical bootstrap method [9] to es-
timate prediction reliability in the form of PIs. The technique
relies on the idea of model resampling [5] rather than data re-
sampling [9], where a population of models is built based on
blocks of data that are randomly drawn from the original time
series to form an empirical distribution of models. Models are
resampled from the distribution to make predictions and con-
struct a distribution of model predictions from which the PIs
are inferred. It should be stressed that PIs are different from
traditional confidence intervals used in statistics, since they ac-
count for two types of uncertainty: in the model and in the data.
We used the aforementioned technique to estimate the PIs for
the core-temperature point predictions. Accordingly, the PI for
ˆ̃yt+1 in (2) can be estimated as [5]:

PI = ˆ̃yt+1 ± Za/2 σ(pred) (4)

where Zα/2 denotes the prediction factor associated with an α%
type I error and σ(pred) denotes the standard deviation of the
prediction error. Here, we set Zα/2 = 2.98 [5].

To demonstrate the performance of the real-time algorithm,
we used data from two field studies involving a total of ten sub-
jects performing military-related field exercises. Both studies
were approved by the Institutional Review Board of the U.S.
Army Research Institute of Environmental Medicine, Natick,

MA and the U.S. Army Medical Research and Materiel Com-
mand, Fort Detrick, MD. In both studies, the core-temperature
data were measured using radio-thermometer analog pills (HQ
Inc., Palmetto, FL) and retrieved post hoc. The pills were in-
gested each evening ∼8 h prior to the data collection and had
the following technical characteristics: size: 22.4-mm length
and 10.9-mm diameter; frequency: 262 kHz; temperature range:
30 ◦C–45 ◦C, with accuracy of ±0.1 ◦C; transmission method:
near-field magnetic link; and sampling rate: 10 s to hourly.
The core temperature is considered to be an accurate reflection
of the thermal state of an individual, although a very recent
study [10] suggests that the accuracy may be dependent on time
of day.

The first study consists of core-temperature data collected
every minute from eight U.S. Marine Corporations volunteers
[age: 25 year (SD 3.2); height: 174 cm (SD 6.7); weight: 71.6 kg
(SD 7.9); body fat percentage: 15.9% (SD 7.1), mean and stan-
dard deviation (SD)] during a four-day field exercise. Each 10-h
day involved a 3-mi morning march to a shooting range, fol-
lowed by day-long exercises and rotations within firing stations,
and a march back via the same route in the evening. Subjects
wore air-permeable battle dress uniform [thermal resistance =
1.32 m2 ·(K/W)] and, when marching, carried a pack load of
26± 1.0 kg. The ground temperature during the day was 29.8 ◦C
(SD 0.5), and the dew point and wind speed were 21.1 ◦C (SD
0.5) and 4.2 m/s (SD 0.5), respectively.

The second study consists of core-temperature data recorded
every minute for ∼8 h from two subjects, a cadet [age: 21 year;
height: 175.0 cm; weight: 73.9 kg; body fat percentage: 17.9]
and a soldier [age: 22 year; height: 170.0 cm; weight: 68.0 kg;
body fat percentage: 13.3], involved in war games. The soldier
and the cadet carried loads of 35 and 45 kg, respectively, and
wore utility uniforms. The ground temperature during the day
was 33.0 ◦C (SD 0.5), and the relative humidity and wind speed
were 70.0% (SD 1.0) and 1.0 m/s (SD 0.5), respectively. The
cadet’s core temperature underwent a sudden increase starting
at 12:20 h and reached an extreme value of 39.5 ◦C around
12:50 h. Although the elevated value of his core temperature
was unknown at that time, while passing through a monitoring
station the cadet was immediately pulled from the exercise be-
cause he exhibited visible signs of heat exhaustion. This dataset
is particularly valuable because it presents an opportunity to test
the point predictions and PIs estimates at difficult-to-obtain, ex-
treme temperature conditions. The time-series data from the two
studies were downsampled to 5-min intervals before applying
the filtering and prediction algorithms.

III. RESULTS AND DISCUSSION

To compare and contrast the performance of the offline and
real-time versions of the algorithms, we performed three sets
of simulations involving the two field studies. Each simulation
was performed twice: once mimicking the real-time predictions
and the other the offline predictions. In the first simulation, we
employed data from the first study to investigate the performance
of the algorithm when one portion of a subject’s data was used
to train the model, i.e., to obtain the coefficients b of the AR
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Fig. 1. Real-time and offline root mean squared errors (RMSEs) for the same-
subject predictions, for each of the eight subjects in the first field study.

Fig. 2. Real-time and offline RMSEs for the cross-subject and cross-study 20-
min-ahead predictions of the cadet’s core temperature, using the models from
each of the eight subjects of the first study.

model, and another portion of the same subject’s data was used
to test (or assess) the model’s predictions. Specifically, for each
of the eight individuals in the first study, we identified the two
days with the longest available core-temperature records and
used one of those days to train the model and the other to test
the model. Fig. 1 shows the testing data RMSEs for such same-
subject predictions. The average RMSE over the eight subjects
for the real-time predictions was 0.33 ◦C (SD 0.09) and for the
offline predictions it was 0.21 ◦C (SD 0.02).

In the second simulation, we investigated the performance
of the algorithms through a cross-subject and cross-study test,
involving the both field studies. We used the models developed
for each of the eight subjects from the first simulation described
earlier to predict the core-temperature profile for each of the two
subjects, the cadet and the soldier, of the second study. Figs. 2
and 3 show the prediction RMSEs for the cadet and the soldier,
respectively. For the cadet’s predictions, the average RMSE
was 0. 34 ◦C (SD 0.06) for the real-time algorithm and 0.22 ◦C
(SD 0.02) for the offline algorithm. For the soldier, the average
RMSE was 0.22 ◦C (SD 0.02) for the real-time algorithm and
0.17 ◦C (SD 0.05) for the offline algorithm.

Fig. 3. Real-time and offline RMSEs for the cross-subject and cross-study
20-min-ahead predictions of the soldier’s core temperature, using the models
from each of the eight subjects of the first study.

In the third simulation, we compared the real-time and offline
versions of the algorithms through cross-subject predictions,
involving the two subjects of the second study. In this case, the
cadet’s entire core-temperature time-series data were predicted
based on a model trained on the entire soldier’s data and vice
versa. We performed this test for two prediction horizons, 10 and
20 min, to investigate the dependency of the real-time algorithm
on the prediction horizon. In this case, we expected the real-time
algorithm to retain the properties of the offline version and yield
a larger RMSE for the longer prediction horizon [4].

Figs. 4 and 5 show the results of the real-time algorithm for
the cadet and the soldier, respectively, for both 10- and 20-
min-ahead predictions. The two horizontal lines in the figures
correspond to plausible physiological thresholds on human core
temperature. The bottom line, at 39 ◦C, could be considered as an
alert threshold warning that a person is exhibiting dangerously
high levels of core temperature, while the top line, at 39.5 ◦C,
could be taken as an alarm threshold indicating an imminent
heat illness. This is supported by a clinical study that confirmed
that 50% of the population will suffer at least a minor heat illness
once the core temperature reaches 39.5 ◦C [11].

Analysis of the results in Fig. 1 shows that for the same-
subject predictions, the average RMSE was 57% higher for the
real-time algorithm than for its offline counterpart. However,
the average RMSE of the real-time predictions at 0.33 ◦C was
still rather small, suggesting that the performance degradation is
acceptable and the technique is viable for real-time applications.

The results presented in Figs. 2 and 3 were very important
from a model’s universality and practical field application point
of view. The results suggest that the average RMSEs obtained in
the cross-subject and cross-study simulations were equivalent
to those obtained for the same-subject predictions in Fig. 1. For
example, the average RMSE of 0.34 ◦C for the cadet’s real-time
predictions in Fig. 2 was comparable to that of the same-subject
predictions of 0.33 ◦C in Fig. 1. Interestingly, the average RMSE
of 0.22 ◦C for the soldier’s real-time predictions in Fig. 3 was
considerably smaller than that of the same-subject predictions
in Fig. 1. While these results indicate that the prediction errors
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Fig. 4. Cadet predictions. 10-min-ahead predictions (top panel) and 20-min-
ahead predictions (bottom panel), and their corresponding 95% PIs.

were somewhat dependent on the specific individuals used to
train and test the models, they also indicate that, overall, the
absolute values of the prediction errors were small. The real-time
results, illustrated in Figs. 2 and 3, corroborated our previous
finding using offline predictions [4] that AR models could be
developed from one individual’s data and subsequently used to
predict other individuals.

The differences between real-time and offline RMSEs were
caused by the so-called end effect observed in real-time filtering
[8]. In real time, the filter can only use data up to time t to
filter the signal at t. Conversely, offline, the whole time series is
available, and future data are used to enhance the filtered data
at time t, improving the performance of the AR model. This
is particularly problematic in the prediction of oscillatory data,
where the real-time filter, unlike its offline counterpart, cannot
anticipate and correct for future, yet unknown curvatures in the
data associated with upcoming inflection points. The end effect
creates special and unique challenges for predictive algorithms,
as the most recent samples, which carry the majority of the
predictive information, cannot be properly filtered.

Notice that the prediction errors between the offline and real-
time predictions were different for different subjects. This is

Fig. 5. Soldier predictions. 10-min-ahead predictions (top panel) and 20-min-
ahead predictions (bottom panel), and their corresponding 95% PIs.

caused by the nature of the core-temperature signal being pre-
dicted. If the test core-temperature signal were smooth and ex-
hibited very little variations, the difference between the offline
and real-time versions would be very small. In the extreme, the
two versions would produce identical results, if the test signal
were a straight line. However, as the variability of the core-
temperature signal increases, the two versions start to diverge,
with the real-time version producing higher prediction errors
due to the end effect of the real-time filtering. This is clearly
noticed when we compare the offline and real-time prediction
errors of the soldier (see Fig. 3) and the cadet (see Fig. 2). Be-
cause the soldier’s data have less variability than the cadet’s, his
average RMSE increased by only 29% (0.17 ◦C versus 0.22 ◦C)
from the offline to the real-time predictions, while that of the
cadet increased by 54% (0.22 ◦C versus 0.34 ◦C). However, as
pointed out earlier, the absolute errors were small.

Figs. 4 and 5 indicate that the point predictions for both sub-
jects were quite accurate during the relatively stable portions
of the core-temperature signal. However, due to the end ef-
fect issues, the point predictions, in particular, the ones with
longer prediction horizons, did exhibit time lags in regions of
large excursions of the core-temperature signal, for example,
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∼11:50 h for the cadet in Fig. 4 and ∼13:10 h for the soldier in
Fig. 5. The most interesting result, however, was that the algo-
rithm was capable of predicting the dangerously high levels of
the cadet’s temperature at 12:55 h for both the 10- and 20-min
prediction horizons. This was possible because the measured
temperature follows a straight line from 12:20 h onward. Actu-
ally, as illustrated in Fig. 4, the cadet’s predictions reached the
alert threshold of 39 ◦C much earlier, at ∼12:10 h, providing
an early indication of the dangerous trend in core temperature.
The significant overprediction of the measured temperature at
∼12:10 h is perhaps less important than the observation that
the algorithm was capable of forecasting a tendency of sharp
increases in the cadet’s core temperature. In contrast, it is worth
noticing that the soldier’s predictions never crossed the alert
threshold, indicating that the algorithm was able to correctly
predict the more stable nature of his core temperature.

Analyses of the 95% PIs in Figs. 4 and 5 show that they re-
flected the expected uncertainty in core-temperature predictions,
as they became significantly wider in the regions with larger sig-
nal variations. Also, as expected, the PIs were wider for longer
prediction horizons (bottom panels) because the confidence in
the predictions decreases with increasing horizons. We should
also point out that, when compared with the offline computa-
tions [5], the real-time PIs were generally wider, reflecting the
larger uncertainty of the real-time predictions. As illustrated in
Fig. 4, the PIs could also be used as warning mechanisms, since
the cadet’s PIs crossed the alert and alarm thresholds even ear-
lier than the point predictions. Another important observation,
as shown in the bottom panel in Fig. 4, is that the predictions
at ∼12:55 h made 20 min earlier possessed very small uncer-
tainties, i.e., had narrow PIs, indicating that the algorithm was
rather confident that the cadet’s core temperature was reach-
ing the 39.5 ◦C alarm threshold. The larger uncertainty for the
same few points obtained with the 10-min-ahead predictions
(see top panel in Fig. 4) is attributed to the larger noise level of
the samples around 12:45 h (not apparent in Fig. 4). However,
as mentioned earlier, on average, the 10-min-ahead predictions
were more accurate than the 20-min-ahead predictions. It is also
reassuring that the PIs for the soldier in Fig. 5 remained under
the alert threshold practically all the time, barely crossing it at
∼13:00 h for the 20-min-ahead predictions. This fact also in-
dicates that the soldier’s core temperature remained stable and
regulated during the whole exercise.

The comparison of the RMSEs for 10- and 20-min predic-
tion horizons in Figs. 4 and 5 revealed that doubling the length
of the prediction horizon effectively doubled the RMSE. This
observation suggests that the RMSE may be a linear function
of the prediction horizon. The cadet’s RMSE was higher than
the soldier’s RMSE for both the prediction horizons, indicating
that prediction of a more volatile core-temperature signal was
less accurate than the prediction of a more stable one. This is
consistent with the results illustrated in Figs. 2 and 3. These
and our earlier results [4] also indicate that the most accurate
predictive models are those developed using the most encom-
passing training data, involving the widest-possible variations of
the core-temperature data. Hence, the ideal training data should
consist of long records, preferably longer than 24 h, containing

the full range of expected core-temperature variations, includ-
ing extreme and dangerous values. Accordingly, in our case, the
universal model should be based on the cadet’s core-temperature
data.

A very encouraging aspect of this study is that the univer-
sality of the predictive models has been preserved, and the
conclusions reached previously for the offline version of the
algorithm [4], stating the possibility of cross-subject and cross-
study predictions, and, hence, model universality, also holds
for the real-time version. Our conclusions concerning the bet-
ter generalization capabilities of regularized models were also
confirmed, as in our real-time simulations, the regularized mod-
els produced more accurate and stable predictions (results not
shown).

The end effect in the real-time filtering of the raw signal is un-
doubtedly the largest limitation of the proposed algorithm, as it
introduces lags in the predictions of oscillatory data, effectively
decreasing the prediction horizon. Another limitation is the use
of the computationally expensive bootstrap method for real-time
estimation of PIs in resource-limited wearable devices.

Simulation results with field data suggest that the real-time
implementation of the core-temperature prediction algorithm
could be a valuable tool for early warning of an impending
heat illness in humans. Although not as accurate as the offline
algorithm, the real-time implementation yielded forecasts with
sufficient fidelity for practically meaningful prediction horizons.
The results also suggest that the decrement in prediction accu-
racy could be compensated by the incorporation of alert and
alarm thresholds in core temperature. For the cadet, the alarm
threshold was reached well before the measured core temper-
ature underwent a continuous sharp increase, whereas for the
soldier, the lower (alert) threshold was barely reached.

Importantly, the universality of the data-driven models has
been preserved, indicating that models could be developed of-
fline from one individual’s data and applied to predict the core
temperature of other individuals in real time. Moreover, the pre-
viously developed PIs, based on the bootstrap method, placed
around the predictions provided a useful and intuitively cor-
rect measure of the reliability of the core-temperature point
predictions.

IV. CONCLUSION

The real-time core-temperature prediction algorithm is cur-
rently being implemented as part of a physiologic monitoring
system for dismounted military personnel, where the cadet’s
data are being used to construct a universal model offline for
real-time predictions of other individuals. The algorithm will
undergo extensive field tests and, if proven successful, could
become an important warning tool for impending heat illnesses
during strenuous physical activities in hot-weather conditions.
Our ongoing research efforts are focused on improving the real-
time filtering of the raw signal to better address the end-effect
problem and implementing an analytical and less computation-
ally expensive expression for estimating statistically based PIs
in real time.
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