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Abstract

We present a classifier for use as a decision assist tool to identify a hypovolemic state in trauma patients during helicopter transport to
a hospital, when reliable acquisition of vital-sign data may be difficult. The decision tool uses basic vital-sign variables as input into linear
classifiers, which are then combined into an ensemble classifier. The classifier identifies hypovolemic patients with an area under a recei-
ver operating characteristic curve (AUC) of 0.76 (standard deviation 0.05, for 100 randomly-reselected patient subsets). The ensemble
classifier is robust; classification performance degrades only slowly as variables are dropped, and the ensemble structure does not require
identification of a set of variables for use as best-feature inputs into the classifier. The ensemble classifier consistently outperforms best-
features-based linear classifiers (the classification AUC is greater, and the standard deviation is smaller, p < 0.05). The simple computa-
tional requirements of ensemble classifiers will permit them to function in small fieldable devices for continuous monitoring of trauma
patients.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Linear classifier; Ensemble classifier; Hemorrhage; Hypovolemia; Vital-signs; Decision assist; Monitoring; Physiology
1. Introduction

Two focuses of contemporary patient monitoring
research include ‘‘smart’’ algorithms, which interpret mul-
tiparameter trends [1], and wearable sensors, which can
have a wide range of form factors, some as innocuous as
an article of clothing [2]. These new capabilities may
improve decision-support in classic hospital environments
and extend monitoring to novel arenas, such as the home
or even a battlefield. In this investigation, our goal is to
automate the detection of major hemorrhage (i.e., a phys-
iologic state of hypovolemia) using a classification algo-
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rithm based on standard vital-signs measured before
arrival at a receiving trauma center.

Consider a scenario in which a single field medic tends to
four casualties. Knowing precisely which casualty is bleed-
ing seriously would be invaluable for the caregiver,
prompting field interventions (e.g., tourniquets and volume
resuscitation), setting evacuation priorities, and activating
the necessary resources. However, even in controlled clini-
cal environments, such as emergency departments [3] and
even intensive care units [4], conventional physiologic mon-
itoring yields data that are noisy, incomplete, or erroneous
due to artifact. The unreliability of pre- and in-hospital
physiologic monitoring poses a major challenge for the
development of advanced decision-support applications.

Practically speaking, any real-time decision-support
algorithm should meet at least two important specifica-
tions. First, of course, the algorithm should be reasonably
accurate. Second, the algorithm should provide consistent
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performance despite inconsistent data availability and
quality. We recently described methods to automatically
distinguish reliable from artifactual physiologic measure-
ments in support of this objective [5,6]. In this paper, we
consider the related problem of missing measurements,
since a consistent set of complete physiological measure-
ments is difficult to guarantee. In hospital, especially for
ambulatory patients, electrocardiography (ECG) leads
may be disconnected or a pulse oximeter probe may come
off a finger. Out of hospital, especially during helicopter
transport of a patient, consistent data collection may be
even more challenging [7].

The development of a classifier to identify major hemor-
rhage in trauma casualties is important for both military
and civilian applications, because trauma is the leading
cause of death for Americans ages 1 through 44 years [8],
and major hemorrhage is the singular treatable cause of
trauma mortality [9,10]. The earlier life-threatening hemor-
rhage is detected, the greater the opportunity exists for
caregivers to provide life-saving therapy. In the future, a
classifier that provides consistent performance despite
inconsistent data availability may prove valuable for deci-
sion assistance if inserted into prehospital travel monitors
for relatively short transports (e.g., from injury scene to
civilian receiving hospital) or longer transports (e.g., mili-
tary Critical Care Air Transport teams that use specially
equipped aircraft to evacuate critically-injured patients
from field hospitals to regional medical centers) [11]; into
conventional hospital bedside monitoring systems; or in
cutting-edge ‘‘wearable’’ systems worn during high-risk
activities (e.g., military operations or firefighting).

2. Methods

2.1. Trauma data

This study is based on physiological time-series data col-
lected from 898 trauma-injured patients during transport
by medical helicopter from the scene of injury to the
Level-I trauma center at the Memorial Hermann Hospital
in Houston, Texas. Additional attribute data were collected
retrospectively via chart review [12,13]. The time-series
variables were collected by ProPaq 206EL vital-sign moni-
tors [14], downloaded to an attached personal digital assis-
tant, and ultimately stored in our database. The variables
consist of ECG, photoplethysmogram, and respiratory
waveform signals recorded at approximately 182, 91, and
23 Hz, respectively, and their corresponding monitor-cal-
Table 1
Population number and demographics of patients constituting the Total and I

Dataset Population Gendera Mean ag

Male Female

Total 627 473 153 38.8
Illustrative 492 373 119 38.2

a One patient had no assigned gender in the Total dataset.
culated variables recorded at 1-s intervals [heart rate
(HR), oxygen saturation of arterial hemoglobin (SaO2),
and respiratory rate (RR)]. In addition, systolic (SBP),
mean (MAP), and diastolic (DBP) blood pressures were
collected intermittently at multiminute intervals. The
patient attribute data include items such as demographics,
injury description, prehospital interventions, and hospital
treatments. There are 100 variables of this type for each
patient, and these data have already been subjected to a
mining exercise [15].

2.2. Datasets

2.2.1. Inclusion/exclusion criteria and outcomes
Two classes of patients are identified in the trauma data-

base; those who received blood in the emergency room
(hemorrhage, 169 cases) and those who did not (control,
729 cases). The patients who received blood are also
required to have documented injuries that are consistent
with hemorrhage, with at least one occurrence of the fol-
lowing: (a) laceration of solid organs, (b) internal bleeding
as indicated by abdomino-pelvic hematoma or hemotho-
rax, or (c) explicit vascular injury and operative repair, or
limb amputation. Patients who received blood but do not
meet the documented injury criteria (75 cases) are excluded
from analysis.

Two datasets, referred to as Total and Illustrative data-
sets, are extracted from this patient population to develop
and validate the classifier (Table 1).

2.2.2. Total dataset

This dataset includes many subjects with missing vital-
sign data. It provides a test bed to evaluate the diagnostic
capability of the classifier on the widest, most representa-
tive patient population. Patients in this dataset have at least
one nonzero vital-sign (HR, RR, DBP, SBP, or SaO2)
available in every 2-min window during the patients’ initial
16 min of transport. In our database, 23 hemorrhage and
173 control cases do not meet this minimal-data criterion.

2.2.3. Illustrative dataset

This is a subset of the Total dataset, comprised of
patients with a complete set of all five of the vital-sign vari-
ables measured during the 5- to 7-min interval of their
transport to the hospital. This dataset is used as a test
bed for several computational exercises that require com-
plete vital-signs for all included subjects, as described in
Section 2.4.
llustrative datasets

e Type of injury Control Hemorrhage

Blunt Penetrating

555 65 556 71
435 51 437 55
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2.3. Data specification

The values of the vital-sign variables used for classifier
training and testing are calculated by three methods
(‘‘best-quality 5-s data,’’ ‘‘first 5-s data,’’ and ‘‘all data
combined’’). Subsequently, we compare these three meth-
ods. All calculations are based on 2-min time windows.
2.3.1. Best-quality 5-s data

All vital-sign data are rated in terms of their reliability
by methods reported previously [5,6]. The best-quality
(i.e., most reliable) data that are continuous for at least
5 s are identified in the time window, and the best-quality
5-s value is calculated as the mean of the first 5 s of the
best-quality data. Note that, if all of the data in the time
window are of poor quality, then the calculated value
may be unreliable. The mean value is used because experi-
ments with other estimators, such as the median, showed
no performance differences. The data quality selection
method intrinsically removes data outliers.
2.3.2. First 5-s data
Here, we use the mean of the first 5 s of vital-sign data in

the time window, without regard to their quality. This
method serves as a control for comparison with the other
methods.
2.3.3. All data

With this method, vital-sign variables are calculated as
the mean of all data in the 2-min time window, a longer
time interval over which data are averaged, in contrast with
the shorter 5-s time intervals used above.
2.4. Linear classifier and feature selection

In this paper, linear classifiers are used for discrimi-
nating between two patient outcome classes, control
and hemorrhage, selecting the most-informative ‘‘best’’
vital-sign features, and constructing ensemble classifiers.
Because a linear classifier can normally be applied only
when all input variables are available (i.e., without miss-
ing variables), all computations involving standalone lin-
ear classifiers are performed exclusively to the Illustrative
dataset, in which subjects have a complete set of vital-
sign variables.

Linear classifiers employ a linear discriminant function
f = wTx + w0, where the vector of coefficients wT and the
coefficient w0 are learned from a training set, to evaluate
a given input vector x against two classes. The linear
classifier used here is trained using a least-squares
method [16], which minimizes the squared difference
between the classifier outputs, which generally fall in
the [0.0,1.0] range, and the target outputs represented
by binary 0 and 1 values. A decision threshold h is used
for classification, i.e., assigning a given input vector x 0 to
the hemorrhage class if f(x 0) > h.
2.4.1. Training and testing protocol

To obtain a ‘‘representative’’ classifier performance,
each classifier (using either the Total or the Illustrative
dataset) is trained/tested through 100 trials. Given a
ratio of the dataset to be used for classifier training
and testing, for each trial, the training data are randomly
selected from the dataset without replacement, and the
remaining data are used for testing. Because the two
datasets have unbalanced control versus hemorrhage
classes (almost 8:1), to reduce classifier bias, the classes
are balanced by undersampling (i.e., randomly dropping)
control patients until both classes have the same number
of patients.

The ability of a classifier to accurately classify patients
into the appropriate control and hemorrhage classes is
quantified by the area under the receiver-operating-char-
acteristic (ROC) curve (AUC) [17]. In Section 3, we
report the average AUC for the 100 trials along with
the associated standard deviation (SD). All AUCs refer
to classifier performance on test data that are not used
for training. The AUCs are calculated by trapezoidal
integration.

2.4.2. Feature selection using a wrapper method

The ‘‘best’’ (most-informative) variables to be used in
the input vector x can be selected by filter or wrapper
methods [18]. Here, we use the wrapper method, which
performs feature selection based on classifier perfor-
mance. There are 31 possible combinations of the five
vital-sign variables, and whichever combination yields
the highest AUC is termed the ‘‘best-features’’ classifier.
The wrapper procedure used here follows the approach
described in Guyon and Elisseeff [18], and is summa-
rized below.

The wrapper method is applied within the context of
the training and testing protocol for the linear classifier
discussed above. However, it only applies to the Illustra-
tive dataset, in which each subject has all five vital-sign
variables. For a given ratio of classifier training/testing
data, and for each of the 100 training/testing (‘‘outer’’)
trials, the wrapper procedure involves a set of 100 addi-
tional trials (‘‘inner’’ trials) performed with the training
data. For each inner trial, the training data are randomly
sampled (without replacement) so that 50% are used to
train 31 different linear classifiers (each employing one
of the 31 possible feature combinations), and the remain-
ing 50% are used for testing. Next, we compute the testing
AUC for each one of the 31 classifiers. This process is
repeated 100 times (corresponding to the 100 inner trials),
and the average AUC for each classifier over these 100
(inner) trials is used to identify the ‘‘best’’ features, which
are then used to train the associated ‘‘best-features’’ clas-
sifier with the entire training data set. Finally, we com-
pute the AUC for the ‘‘best-features’’ classifier using the
testing data. This process is repeated 100 times, once for
each one of the 100 outer trials of the training and testing
protocol.



Table 2
Comparison of the classification performance of linear classifiers using
independent variables versus composite-variable features

Variables Test AUC

Shock index = HR/SBP 0.76 (SD 0.06)
HR, SBP 0.75 (SD 0.06)

Pulse pressure (PP) = SBP � DBP 0.73 (SD 0.06)
SBP, DBP 0.71 (SD 0.07)

Hemorrhage Index = (HR · RR)/(MAPa · PP) 0.73 (SD 0.06)
HR, RR, SBP, DBP 0.74 (SD 0.06)

RR/PP 0.67 (SD 0.08)
RR, SBP, DBP 0.72 (SD 0.06)

HR/PP 0.75 (SD 0.10)
HR, SBP, DBP 0.75 (SD 0.07)

AUCs (mean and SD) show test results from 100 trials, where for each
trial 50% of the Illustrative dataset are used for training and 50% for
testing.

a Mean arterial pressure (MAP) = (1/3) · SBP + (2/3) · DBP.
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2.5. Ensemble classifier

We employ ensemble classifiers to address the problem
of missing vital-sign data. In addition, ensemble classifiers
have been reported to provide improved classification
accuracy [19], because the integration of multiple separate
classifiers, reporting an ‘‘ensemble’’ behavior, is less sus-
ceptible to idiosyncrasies in the data. An ensemble classifier
consists of multiple linear ‘‘base’’ classifiers and an ‘‘aggre-
gator’’ that combines the decisions of the base classifiers.
Aggregation can be achieved by different methods, such
as majority vote, median, or average. In general, the per-
formance of ensemble classifiers is weakly dependent on
the selected aggregation method [20,21]. Our preliminary
results confirm this observation; therefore, for convenience,
we aggregate the results of the base classifiers by averaging.

Using all combinations of the five vital-sign variables
(HR, RR, DBP, SBP, and SaO2), the largest-possible
ensemble classifier consists of 31 base classifiers, including
five classifiers with one input, 10 classifiers with two inputs,
10 classifiers with three inputs, five classifiers with four
inputs, and one classifier with five inputs. However, our ini-
tial tests show that there is no performance improvement,
in terms of AUC, by using more than three inputs to the
base classifier. Hence, our ensemble consists of the 25 linear
base classifiers corresponding to the 25 possible combina-
tions of one, two, and three input variables.

Ensemble classifiers are employed in two groups of com-
putations: (a) using the Illustrative dataset for a direct com-
parison with the ‘‘best-features’’ linear classifier (see
Section 2.4 above), and (b) using the Total dataset for
benchmarking the performance against real-world applica-
tions with frequent missing data. In the latter case, we need
to make adjustments to the training and testing protocol
discussed in Section 2.4. During both training and testing,
the number of base classifiers used (from 1 to 25) varied,
depending on the availability of vital-sign data for each
patient.

2.6. Classifier performance and statistical analysis

Differences between AUCs of two classifiers, e.g.,
ensemble versus best-features classifier, are tested for statis-
tical significance by Wilcoxon matched-pairs signed-ranks
tests [22]. The test verifies whether the observed difference
between two sets of observations is statistically not differ-
ent from zero, which represents the null hypothesis. The
Wilcoxon test is a nonparametric analogue to the paired
Student’s t-test, but it allows the differences to be non-nor-
mally distributed.

3. Results

3.1. Individual variable versus composite-variable features

We test the hypothesis that the interaction of variables
with each other (i.e., a composite relationship, such as
HR/SBP or SBP–DBP) offers more information than
separately inputting each of the same basic variables
(HR, SBP, and DBP) into a classifier. HR/SBP is known
as the shock index and SBP–DBP as the pulse pressure,
and both are effective at signaling cardiovascular hypo-
volemia in certain applications [23,24]. We test the clas-
sification performance of linear classifiers using these
composite-variables as input features, along with three
additional composite features (Table 2) that appeared
promising based on attempts to generate useful features
by our group. For comparison, we test the performance
of linear classifiers using the same variables as individual
input features (Table 2). No significant differences in
classification performance are apparent, suggesting that
either variable format is adequate for input into the clas-
sifier. We observe the same outcome when applying non-
linear classifiers (feedforward artificial neural networks
and support vector machines, results not shown). Conse-
quently, for all subsequent analyses, we only use the
basic vital-signs as input features into all classifiers.
3.2. Best-features-based classifiers versus ensemble classifiers

We evaluate whether a single classifier using the best
set of vital-sign inputs (‘‘best-features’’ classifier) pro-
vides better discrimination than an aggregation of clas-
sifiers using all possible sets of the variables
(‘‘ensemble’’ classifier). Using the linear wrapper method
(Section 2.4), we resample the Illustrative dataset 100
times, and observe that there is no consistent ‘‘best’’
set of vital-sign variables to use as input features to a
linear classifier. The most common best-features, com-
posed of the HR and SBP variables, are selected only
14% of the time (Fig. 1). It is notable that, within the
100 resamples, a majority of the combinations that
can be obtained using five vital-sign variables are
selected as the best-feature set (21 out of a maximum



Fig. 1. Percent selection (left ordinate) denotes the number of times a vital-sign combination (indicated on the histograms) is selected as the best-feature by
the wrapper method. The AUC (right ordinate) denotes the mean classification performance by the best-features (triangles) and ensemble (circles)
classifiers. The best-features and ensemble classifiers are trained and tested on the same 100 sets (30% training and 70% testing) resampled from the
Illustrative dataset. The AUCs indicate the mean classification performance by the best-features and the ensemble classifiers for the sets characterized by
each of the feature combinations. Variability of the AUCs is not shown for clarity but averaged 0.04 AUC units over all of the feature combinations for
both the best-features and ensemble classifiers.

Fig. 2. Comparison of means and SDs of test AUCs calculated using
ensemble and best-features classifiers. Given a set ratio of training data,
100 random sets of training and testing data are taken from the Illustrative
dataset. The best vital-sign features are selected by the wrapper method
(Section 2.4) from the training data, and a linear classifier is trained using
the best-features. AUCs over the 100 test sets are averaged, and the mean
and SD are shown in the upper and lower panels, respectively (crosses).
The same 100 random sets are used to train and test ensemble classifiers,
and their associated mean AUCs and SDs are also shown in the upper and
lower panels (circles). For comparison, the shaded area denotes the mean
of all of the best-features and ensemble classifier AUCs and SDs derived
from the 30% training and 70% testing sets in Fig. 1.
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of 31 possible combinations). These results indicate that
all of the vital-sign variables contain information useful
for classification and that there is no consistent best-fea-
ture set for input into a classifier, since the best-features
are attained only within the context of a selected popu-
lation. This is a key finding and suggests that classifiers
based on presumptive best-features will not be stable
across larger populations.

The best-features classifiers are compared with the
ensemble classifier. The mean AUCs for each of the 21
combinations are compared, and the ensemble classifier
consistently performs better than each of the best-features
classifiers (Fig. 1). The difference in performance is statisti-
cally significant (p < 0.001).

A further comparison of best-features versus ensemble
classifiers is performed to determine the sensitivity of
classifier performance to the ratio of data used for train-
ing and testing. Both classifiers show diminished
performance, expressed as mean AUCs, at small train-
ing-to-testing ratios (upper panel, Fig. 2). The AUCs
became more erratic at either extreme of the training-
to-testing ratio and yield an increase in the standard
deviation, SD (lower panel, Fig. 2). The ensemble classi-
fier performs better than the best-features classifiers in
terms of mean AUCs and their associated SDs
(p < 0.001 and p < 0.05, respectively). Based on these
and the previous results, it is clear that linear classifiers
in an ensemble structure perform better than single linear
classifiers applied to input features identified as ‘‘best’’
from a subsample of a population.
3.3. Ensemble classifier performance

The ensemble classifier, as the average of linear base
classifiers using all combinations of one, two, and three
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vital-sign variables, has a good classification performance,
generating a test AUC of 0.76 (SD 0.05) for distinguishing
hemorrhage from control patients in the Total (i.e., maxi-
mum patient population) dataset. The associated ROC
curve optimal operating point, as calculated by both the
Youden index and the closest to (0,1) criteria [25,26], yields
a sensitivity of 0.69 (SD 0.08) and specificity of 0.68 (SD
0.09); alternatively, the specificity is 0.40 (SD 0.10) at a
clinically-relevant sensitivity of 0.90. The classification per-
formance is not due to fortuitous events because random
scrambling of control and hemorrhage classes in the data-
set decreases the classifier performance to an AUC of 0.59.
These results indicate that the classifier learns information
that is present in the vital-sign data.

A major advantage of an ensemble classifier is that it can
deal effectively with missing data. This is important
because it is likely that a full set of vital-sign data will occa-
sionally be unavailable for a patient due to sensor malfunc-
Table 3
The effect of randomly removing variables on ensemble classifier
performance

Ratio (%) AUC

0 0.75 (SD 0.06)
5 0.74 (SD 0.06)

10 0.73 (SD 0.06)
15 0.72 (SD 0.06)
20 0.71 (SD 0.07)
30 0.69 (SD 0.07)
40 0.68 (SD 0.08)
50 0.65 (SD 0.07)
60 0.62 (SD 0.09)

Vital-sign variables are randomly dropped in set ratios from the Illustra-
tive dataset, and the average AUC, based on 100 trials at each ratio, is
calculated. The ensemble classifiers are trained on a random 50% sample
of the changed dataset and tested on the remaining 50%.

Fig. 3. Ensemble classifiers are trained and tested on 100 random sets (50%
variables calculated by three different methods, as described below. The classifie
interval of patient transport (shaded area) and then tested on the remainder o
values of the vital-sign variables are calculated in 2-min time windows as the
entire 2-min window (mean all, triangles), and (c) 5 s of unqualified data (first
are shown. The standard deviations are not shown for clarity but averaged 0.
tion, misplacement, motion artifacts, or other
circumstances. This situation occurred while collecting
data for patients comprising the Total dataset. The HR
vital-sign records are present in 99% of the cases, but the
other vital-sign records are only present 91% of the time.
Requiring combinations of the vital-sign data will further
decrease the population until, in the most restrictive case
in which the patients must have all five vital-sign records
(i.e., the Illustrative dataset), only 78% of the original Total
patient population remains. The ensemble classifier is rela-
tively resistant to such missing data; randomly dropping
vital-sign variables from the Illustrative dataset only slowly
degrades the classifier’s performance. For instance, a loss
of 40% of the vital-sign data results in only a 9% decrement
in performance (Table 3).
3.4. Ensemble classifier performance over patient transport
time and data quality

The influence of time and data properties on classifier
performance is compared by training three ensemble classi-
fiers at a single time point on variables calculated from
vital-sign data by different methods (Section 2.3) and then
by testing the classifiers using equivalently calculated vari-
ables as input in sequential 2-min time windows over a
total of 16 min of patient transport time. All three classifi-
ers significantly improve their classification performance
over time (Fig. 3, p < 0.05 by t-tests of the linear regression
coefficients), suggesting that the ensemble classifier
responds to time-dependent changes in the vital-sign data.
The amount of data used to calculate the variables is
important if unqualified data are used. As Fig. 3 shows,
the average AUCs of classifiers using variables calculated
as the mean over the 2-min window of data are significantly
better than those of classifiers using variables calculated as
training and 50% testing) drawn from the Total dataset using vital-sign
rs are initially trained and tested using data collected during the 5- to 7-min
f the data in sequential 2-min intervals throughout 16 min of study. The

means of: (a) 5 s of the best-quality data (5 s best-quality, circles), (b) the
5 s, crosses). The mean AUC results from classification of the 100 test sets
05 AUC units over 16 min for each of the data instances.
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the mean over the first 5 s of data from each 2-min window
(p = 0.008). However, taking the reliability of the data into
account alters this relationship. Variables calculated using
only 5 s of the best-quality data yield classification perfor-
mance that is not significantly different from those attained
from variables calculated using the 2-min mean of unqual-
ified data (p = 0.734). Finally, classification performance is
better for classifiers tested on variables calculated from 5 s
of the best-quality data compared with variables calculated
from 5 s of data chosen, without consideration of its qual-
ity, from the beginning of each 2-min window (p = 0.027).

4. Discussion

We have formulated an algorithm that uses basic
vital-signs to identify major hemorrhage in trauma patients
during helicopter transport to a hospital, i.e., identifies
which casualties are bleeding so severely that they will
require a life-saving blood transfusion. Based on our retro-
spective analysis of 627 subjects with 71 cases of major
hemorrhage, this classifier’s performance, expressed as
the area under a receiver operating characteristic curve, is
near 0.75, which falls within a ‘‘good’’ classifier range. Over
the course of transport, the typical patient has progres-
sively less missing data (26% missing variables in the first
2 min, dropping to 5% missing variables beyond 8 min),
and our classifier grows even more accurate, peaking near
0.80 (Fig. 3). This classifier functions without regard to
gender, age, type of injury, or other confounding factors,
such as medics’ intervention during transport. An AUC
of 0.80 can be interpreted to mean that, applying this clas-
sifier to two subjects, one from each outcome class, the sub-
jects will be accurately classified 80% of the time [27].

There are three major issues to discuss. First, if there
were no missing vital-sign data, how well would our ensem-
ble classifier perform, compared with other options? Sec-
ond, is our ensemble classifier an appropriate solution to
missing data? Third, what implications do our results have
for real-world application?

We explore the first issue with the ‘‘Illustrative dataset,’’
which is the set of subjects with complete vital-sign data.
One important finding is that there is no ‘‘best’’ vital-
sign(s) for identifying hemorrhage: when we examine 100
subsets of this dataset, there is no one consistent set of

vital-signs that are the most discriminatory (Fig. 1). For
instance, in 2% of the subsets, HR, SaO2, and DBP prove
to be the best multivariate discriminator between major
hemorrhagic and control cases. In 4%, RR and SBP are
the best. The most frequent ‘‘best set,’’ SBP and HR,
occurs in merely 14% of the subsets. Overall, there are 21
different ‘‘best sets’’ of vital-signs identified during our
exploration of 100 randomly selected subsets. The fact that
there is no consistent ‘‘best set’’ of vital-signs, and that all
the vital-signs contain at least some discriminatory infor-
mation, means that a conventional linear classifier runs
the risk of overfitting to any subpopulation. Also, because
of this information heterogeneity, a conventional linear
classifier may have inconsistent accuracy in different sub-
sets. When we compute these ‘‘best set’’ regression models
against the ensemble classifier using all five vital-signs, we
find (unsurprisingly) that the ‘‘best set’’ underperforms.

As seen in Fig. 1, the ensemble classifier tends to per-
form as well as, or better than, a single linear classifier
when applied to 100 training/testing trials. The advantage
of ensemble classifiers appears to persist through different
ratios of training/testing cases, as shown in Fig. 2. Lastly,
we show that the ensemble classifiers are indeed learning
the ‘‘true’’ underlying vital-sign profiles of major hemor-
rhage. When we perform a simulation that randomly
changes the subjects’ outcome classes while preserving their
vital-signs, classifier performance degrades, as expected.
This provides additional confirmation that our classifier
can identify vital-sign patterns consistent with hemorrhage.

Ensemble classifiers offer statistical, computational, and
representational advantages compared with a single classi-
fier [19,28]. Statistically speaking, a single classifier, gener-
ated from a particular training set, may not apply to a
broader population, whereas the average of an ensemble

of separate classifiers should have a more consistent perfor-
mance throughout different subgroups, yielding a more sta-
ble, and perhaps more accurate, performance.
Computationally, the ensemble classifier may better
approximate the ‘‘true,’’ but unknown, discriminatory
function when multiple base classifiers, each trained with
different training data, are combined. Lastly, the ensemble
structure may be a fundamentally superior representation
of the relationship between the independent and dependent
variables, encoding relationships that cannot be repre-
sented by any single base classifier [19,28,29].

When we compared linear with nonlinear classifiers for
this application, including feedforward artificial neural net-
works trained with a conjugate gradient algorithm [30],
support vector machines trained with linear and radial
basis kernels [31], and classification trees [32], we found
that none of these alternatives offered better performance
than a basic linear classifier [33]. This might be explained
by our limited volume of training data, which hindered
classifier optimization through cross validation. We also
attempted to improve the ensemble classifier performance
via bagging [34] and boosting [35]. However, they yielded
the same overall performance, AUC of 0.76 (SD 0.05).
We interpret this lack of improvement to mean that the
ensemble classifiers are reasonably stable, so their perfor-
mance is not improved by further resampling and aggrega-
tion [19].

Our basic justification for using ensemble classifiers is
their ability to tolerate missing variables [36]. Although
prior investigators have reported promising results using
machine learning algorithms in predicting major hemor-
rhage [37], mortality in patients with head trauma [38],
and trauma outcomes [39], such methods require the avail-
ability of all independent predictor variables, all the time.
The ensemble classifier presented in this paper is free from
such limitation, since it uses whichever variables are
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available at any given time, thus significantly increasing the
overall system availability.

Because we are using just the basic vital-signs (HR, RR,
DBP, SBP, and SaO2), we are able to use all combinations
of one, two, or three vital-signs as inputs into the base clas-
sifiers that comprise the ensemble (there was no improve-
ment in performance when we used more than three
vital-signs per base classifier). In practice, when a subject
is missing a vital-sign, we drop whichever base classifiers
require the missing vital-sign as input, and the remaining
base classifiers make up the ‘‘new’’ ensemble. The system
is able to classify the patient as long as a single vital-sign
variable is available. Using our Illustrative dataset, we
quantify the effects of missing data (Table 3)—the slow
degradation of performance as a function of increasing loss
of data.

Missing data is a real problem in our Total dataset, col-
lected in the real-world during prehospital patient trans-
port, and we speculate that missing data will be a major
problem during any physiologic monitoring in unstruc-
tured environments (home, battlefield, disaster scene,
etc.). Applying to the Total dataset, we learn in practice
how the ensemble classifier might perform: during the first
2 min of transport, where 26% of the variables are missing,
the classifier yields a 0.70 AUC performance. The AUC
rises through time, when there is less and less missing data
(see Table 4). This validates that our ensemble classifier
functions as intended: it classifies subjects with whatever
information (or lack thereof) is available. This property
should be an asset to any real-world application, when
complete data availability cannot be taken for granted.

There are alternative techniques to handle missing data,
such as imputation or expectation-maximization (EM)
algorithms [40], which we decided are not ideal for our
application. Imputation techniques require either availabil-
ity of similar data (which, because of the limited size of the
prehospital dataset, we do not have), or the availability of a
probabilistic model for the data-generating mechanism,
Table 4
The relationship between the ensemble classifier AUCs and the percent-
ages of missing and reliable variables in the Total dataset as a function of
time

Time
interval
(min)

Ensemble
classifier
AUC

% of missing
variables in the
Total dataset

% of reliable
variables in the
Total dataset

0–2 0.70 26 39
2–4 0.73 14 50
4–6 0.78 8 56
6–8 0.75 6 58
8–10 0.77 5 59
10–12 0.78 5 59
12–14 0.79 4 57
14–16 0.77 4 53
Correlation

with AUC
1.00 �0.90 (p = 0.002) 0.87 (p = 0.005)

The percentages of missing and reliable variables are significantly corre-
lated with AUC (p < 0.05).
which may not be effective given the heterogeneities in
our data (this heterogeneity is exemplified in Fig. 1). More
importantly, imputation implicitly requires knowledge of
the outcome class (to establish the extent of data similar-
ity), which we do not know during real-time application.
Ultimately, these factors motivated our selection of an
ensemble of linear base classifiers. In the future, a direct
comparison with alternative solutions for missing data
may be warranted.

Our classifier offers good, but not excellent, accuracy.
We believe that this reflects a limitation to the information
in the basic vitals signs. We have shown that alternatives to
the ensemble, other linear and nonlinear classifiers, are not
more effective. Also, as shown in Table 2, there is no appar-
ent advantage when the variables are arranged into a com-
posite structure (e.g., the shock index HR/SBP); classifiers
containing the basic vital-signs seem to yield the same
information. Beyond these basic vital-signs, there are other
physiological measurements that have been shown to be
diagnostically useful in trauma patients. These include car-
diac index and transcutaneous oxygen tension indexed to
the fractional inspired oxygen concentration [41], blood
base excess [42], and heart rate variability [12]. Information
may also exist in the temporal changes of the basic vital-
sign data. It is possible that, in the future, our ensemble
classifier could be improved by incorporation of additional
physiologic variables along with the basic vital-sign
variables.

The ensemble classifier performs better over time
(Fig. 3). We have already speculated that this is largely a
function of better data availability (Table 4). We do not
think this is due to progressive changes in physiology. In
a subset of 296 patients with two SBP measurements, one
from the first 10 min and one from the subsequent
10 min, the ROC AUC is identical for both time periods
(AUC = 0.73). In general, we do not find any evidence
for progressive physiologic evolution to explain the rising
AUC through time. It is also possible that the medics’ ther-
apies may be affecting the physiology through time. How-
ever, we do not believe this is a major factor either.
When, in addition to the basic vital-signs, we input the vol-
ume of fluid resuscitation given to each subject into our
classifiers, the AUC typically rises just +0.02 units. Based
on this, we conclude that the volume of fluid resuscitation
is a minor factor in the underlying relationship between
vital-signs and major hemorrhage (moreover, volume
replacement therapy would tend to mask the physiology
of hemorrhage, rather than make it more evident through
time).

This study focuses on the problem of missing data, but
our results also address the matter of unreliable data. Use
of 5 s of the ‘‘best-quality data’’ available (determined by
our own automated algorithms) yields better classification
performance than unqualified data. Using a simple 2-min
average of all the data gives classification performance that
is equivalent to using 5 s of qualified data. These findings
suggest that, in a fieldable implementation of the classifier,
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the collected data might be filtered by either averaging val-
ues over a certain time window, or, if time is of the essence,
by automatically qualifying the data before input to the
classifier. In addition, Table 4 shows that there is a positive
correlation between percentage of reliable data and classi-
fier AUC. This further indicates the strong dependency of
improved classification on data quality.

5. Conclusions

It is possible to classify trauma patients into those
that show physiological responses consistent with a car-
diovascular hypovolemic state and those that are nor-
movolemic. The classifier uses five basic vital-sign
variables, HR, RR, DBP, SBP, and SaO2, collected at
1-s intervals, since no advantage is apparent if the vari-
ables are arranged into a composite structure. The classi-
fier is constructed from simple linear classifiers in an
ensemble configuration, which is able to tolerate missing
vital-sign data, and is more reliable than classifiers based
on the identification of the ‘‘best’’ variable features. The
classifier is robust enough to work with simple, unfiltered
vital-sign data, but its performance can be marginally
improved by using the best-quality data available or by
accumulating mean vital-sign values over a longer time
period. The ensemble classifier can be an important ele-
ment in ongoing efforts to develop reliable, fast, and
small devices to monitor a patient’s physiologic state in
real-time to provide caregivers with additional informa-
tion to assist in the care of their charges.
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