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ABSTRACT 
 
Respiratory waveforms and their derived respiratory rate time-series data can become misaligned from each other when 
they are collected by vital signs monitors under sub-optimal field conditions.  The monitor-provided waveforms and 
rates can be re-aligned by independently calculating respiratory rates from the waveforms and then aligning them with 
the monitor-provided rates.  However, substantially different rates may be generated from the same waveform due to 
the presence of ambiguous breaths at noisy positions in the waveform.  This paper reports a landscape matching 
(LAM) algorithm to align respiratory rate time-series data with the waveform that they are derived from by using rates 
that are calculated by different means.  The algorithm exploits the intermittent matches between two respiratory rate 
time series to generate a matching score for an alignment.  The best alignment exhibits the highest matching score.  
The alignment performance of the LAM algorithm is compared to that of a correlation matching (CM) algorithm using 
field-collected respiratory data.  Alignment performance is evaluated by: (1) comparing the ability of the two 
algorithms to return a shifted waveform to its original, known position; and (2) comparing the percent of points that 
match between the monitor-provided and calculated respiratory rate time-series data after re-alignment.  The LAM 
alignment algorithm outperforms the CM algorithm in both comparisons at a statistically significant level (p<0.05).  
Out of 67 samples with shifted time-series data, on average, the LAM aligns respiratory rates within 44 seconds of the 
original position, which is significantly better the CM-calculated alignment (136 seconds).  Out of 465 samples, the 
LAM performs better, worse, and equal to the CM algorithm in percentage of points matching in 73%, 11%, and 16% of 
the cases, respectively.  This robust alignment algorithm supports the use of reliable post-hoc monitor-provided 
respiratory rates for data mining purposes.   
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1. INTRODUCTION 
 
The respiratory rate is a fundamental vital sign.  It is associated with the modulation of cardiac vagal outflow and tone 
via respiratory sinus arrhythmia,1,2 and has been used to evaluate respiratory mechanics during mechanical ventilation,3,4 
to index cardiac parasympathetic control,5 and to estimate trauma severity.6  Moreover, patterns of respiration, such as 
alternating respiration7 and Cheyne-Stokes respiration,8 have diagnostic value for various sleep-disorder and 
cardiovascular diseases.9,10  The simultaneous study of respiratory rate, heart rate, arterial pressure, and other 
physiological variables may help discover critical dynamics, trends, and events that affect patient outcomes.11−14  Such 
multivariate study, however, requires the time-synchronized acquisition of physiology variables.  Continuous 
monitoring and acquisition of respiratory rates, in synchronization with other physiological variables, is supported by 
various vital signs monitors, and tools have been developed to record respiratory waveforms and their derived rate data 
and export them into external storage media.12,15  The availability of these tools and techniques enables large-scale data 
warehousing and the post-hoc study of field-collected physiological time-series data,16 which is essential for the 
development of automated diagnostic and/or prognostic algorithms to assist in emergency care and combat casualty 
monitoring systems. 
 
Respiratory waveforms collected in the field are noisy, and result in erratic derived respiratory rates.  Our post-hoc 
study of physiology data records from 735 trauma patients, collected during transport from the field to hospital, shows 
that data quality is a major issue that must be addressed to support the development of reliable diagnostic or prognostic 
algorithms for trauma patient care.17  Misaligned, missing and mislabeled data are common, possibly because of 
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interruptions between the recording of the respiratory waveforms and the rates under the relatively unstructured 
environment that pertains during transport of patients, or errors in the data archiving process.  Assuring the proper 
alignment of physiology time-series and quantifying their quality is necessary for data-mining purposes.  This paper 
presents an algorithm to align low-quality respiratory waveforms, and their associated, but possibly time-misaligned 
rates, with high accuracy.  The algorithm independently recalculates the respiratory rate from the respiratory 
waveform, and then compares the calculated respiratory rate (RRC) to the monitor-provided reference respiratory rate 
(RRR) to determine if temporally repositioning one series with a certain shift will result in a better match between the 
two respiratory rate series, and, hence, estimating the necessary shift to correct the alignment between the monitor-
provided waveform and RRR. 

 
The alignment problem is challenging because respiratory rates, derived from the same waveform segment, can vary 
greatly depending on how breaths are counted.  For example, a 15-second respiratory waveform from a typical patient 
breathing at 20-breaths/minute contains 5 breaths, which are identified by counting the number of breath cycles in the 
respiratory waveform.  However, a noisy respiratory waveform may include a mixture of deep and shallow breaths, in 
which case deciding to include or exclude potential breaths for breath-counting purposes becomes highly subjective, 
even for human experts.12,18  Therefore, differently implemented breath-identification algorithms may generate 
substantially different respiratory rates.  For instance, missing one breath cycle from the above 15-second respiratory 
waveform will yield a 16-breaths/minute respiratory rate or a 20% difference from the ‘actual’ rate.  Respiratory 
waveforms collected in the field are especially noisy which, in combination with other effects, such as artifacts 
generated by subject movement and by poor placement of sensor electrodes on the body,19 lead to additional ambiguities 
in breath identification and to a greater disagreement in respiratory rates as calculated by different algorithms.  An 
alignment algorithm that can tolerate such noisy signals and large outliers is, therefore, desirable.  

 
Alignment of the respiratory data can be accomplished by employing a matching score, which measures the cumulative 
distance between two respiratory rate time-series, with a certain shift applied to one series.  The shift that maximizes 
the matching score between the two aligned series is deemed the best alignment.  We found that our alignment 
algorithm, termed LAM (LAndscape Matching), which employs a landscape matching protocol, is more sensitive and 
accurate than an algorithm that uses correlation matching.  The LAM algorithm capitalizes on alignments that occur 
among pair-wise points of two time-series by employing a parameter that strengthens the simultaneous change of values 
in neighboring matching positions.  This method, therefore, tolerates large outliers while emphasizing intermittent 
matches between the two respiratory rate time series.  Such functionality is lacking in other functions which measure 
distance between time series, such as the average Euclidean, Manhattan, and Minkowski distances between all pairs of 
points.20  Adoption of the LAM algorithm significantly improves the accuracy of the alignment of our respiratory data.  

 
We describe, in Section 2, the respiratory waveform and respiratory rate data on which our algorithm is developed and 
tested.  The correlation matching and LAM algorithms are detailed in Section 3.  Their performance is compared in 
Section 4, followed by conclusions in Section 5. 

2. DATA 
 
Complete vital signs records for 735 trauma injured patients are warehoused in our system for the management and 
analysis of time-series physiological data, which is termed the Physiology Analysis System (PAS).16 These data were 
collected from patients during transport by Life Flight helicopter service from the site of injury to the Memorial 
Hermann Hospital, an urban regional trauma center at Houston, Texas.21  Vital signs data were collected during flight 
with a Propaq Encore® 206EL (Software Version 2.0X) vital signs monitor;15 the data were then exported onto a 
personal digital assistant flashcard, uploaded to a local database22 and then exported into the PAS.   
 
The Propaq monitor collects respiratory waveforms by impedance pneumography from the same leads used to collect 
electrocardiogram (ECG) waveform data.  The monitor determines which signals are artifacts and which signals result 
from actual respiratory efforts.  The ECG waveform is collected at 182 Hz and the respiratory waveform is collected at 
22.7 Hz.  The ECG heart rate and the respiratory rate are derived from the ECG waveform and respiratory waveform, 
respectively, and both are provided at 1.0 Hz intervals.15  Each monitor-provided respiratory rate and heart rate datum 
is recorded along with a time stamp corresponding to the actual time the datum is read, while each respiratory waveform 
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and ECG waveform datum is recorded with a sequential number starting from 1.  Thus, if the derived respiratory rates 
are not aligned with the respiratory waveform, we assume that the same misalignment holds between the derived heart 
rates and the ECG waveform.  With this working assumption, we verify the accuracy of our alignment algorithm for 
the respiratory rate by comparing it with the alignment of good-quality ECG waveform and heart rate data.  This is due 
to the fact that ECG heart beats can be identified without ambiguity from good-quality ECG waveforms, and, therefore, 
alignment of recalculated heart rates from good-quality ECG waveforms and the device-provided heart rates can be 
much more reliably determined.  It is worth mentioning that the main purpose of our respiratory data alignment 
algorithm is to robustly realign respiratory data when the corresponding ECG waveform is unavailable or is very noisy 
and the corresponding ECG heart rate is hard to compute.  Patients with good-quality ECG waveforms are selected by 
application of an in-house developed heart rate quality index algorithm.17  Therefore, we use the heart rate alignment 
shifts from good-quality ECG waveforms as a ‘gold standard,’ and as the ‘known’ respiratory shifts to evaluate the 
respiratory data alignment algorithm.   
 
From the total population of 735 patients, a test population of 67 patients was selected, each with ≥2 minutes of 
continuous ECG waveform, and we required that ≥70% of each ECG waveform series was of good quality.  The ECG 
waveforms were previously aligned to the ECG heart rates,17 and the expected equivalent alignment shift for each 
respiratory rate was calculated.  For each of the 67 patients, a segment of respiratory waveform is extracted from the 
original waveform at a random starting position and the length of the extracted waveform segment is selected by 
multiplying the total waveform length by a ratio r, which is chosen in a range between 0.5 and 1.0.  The recalculated 
RRC, the reference RRR, and the expected alignment position, which is determined by the referred ECG alignment shift 
plus the random starting position, for each extracted waveform segment are composed as a test sample.  The 67 test 
samples, each from a different patient, constitute one test dataset.  The process was repeated five times by fixing r, and 
repetitively sampling from different random starting positions of each patient's respiratory waveform.  The five 
datasets associated with a fixed r are termed an r-collection.  We then generated 6 r-collections using r values of 0.5, 
0.6, 0.7, 0.8, 0.9, and 1.0, for a total of 2010 (5×6×67) test samples.   

3. METHODOLOGY 
 
This section describes two algorithms to align respiratory rates.  The first, the correlation matching (CM) algorithm, 
utilizes the correlation coefficient of two time series at each aligned position to calculate a matching score.  The 
second, the LAM algorithm, utilizes a landscape vector, λ, to calculate the matching score.  Before detailing the 
algorithms we first introduce some concepts.  

3.1. Definition of concepts 
Let a time series of length T be represented by vector x, whose value at position t, t = 1, 2, …, T, is denoted as x(t).  A 
shifted time series x+s of x, with a shift s, is a time series whose value at position t is x+s(t) = x(t − s), for all valid t.  The 
overlapping segment of two time series, x1 and x2, of length T form sub-series of length T*, with T* ≤ T, denoted as x1

* 
and x2

*, respectively.  These two time series, derived from the same waveform, are misaligned if there is a shift s0≠0, 
such that x1 and

0,2 s+x have an overlapping segment whose values are derived from the same positions in the waveform. 
Given two misaligned time series, the alignment problem is to find their unknown original shift s0.  Throughout this 
paper, we assume that the shift will be applied to the second time series in the order of the input arguments, and that the 
first time series will maintain its original position.  We further assume that the shift is positive, in that the second time 
series is shifted by +s positions from t − s to t.  However, our alignment method is general, and it is equally suitable for 
data requiring negative shifts.   
 
We estimate the optimal alignment shift ŝ between two time series, x1 and x2, as the shift s that maximizes a matching 
function ),(M ,21 ss +xx , that is, )],([Mmaxargˆ ,21 ssss += xx , where ),(M ,21 ss +xx is a correlation-based function CMs or 
a LAM function θ,LMs discussed below.  
 
The performance of an estimated alignment shift ŝ is evaluated by calculating the difference ),ˆD( 0ss from the known 
shift s0, where |ˆ|),ˆD( 00 ssss −= . A smaller difference represents a better alignment and the ideal alignment yields 
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0),ˆD( 0 =ss , representing the condition where the estimated alignment shift matches the actual shift exactly.  The 
difference D requires the known actual alignment shift s0 to be known.   
 
Another method to evaluate an alignment is to count the number of matched positions of the aligned time series.  Let 
x1 and x2 be two time series of length T1 and T2, respectively, and θ be a matching threshold. The matching positions of 
x1 and x2 under threshold θ are defined as all positions t that satisfy  
 

θ≤− |)()(| 21 txtx .         (1) 
 

The matching positions sorted in the order of time constitute a time series denoted as      of length Tθ , where     
)(kτ , k=1, 2, …, Tθ , denotes the time of the k'th matching position.  The percentage match (PM) of an estimated 

alignment shift ŝ , for the alignment of x1 and x2 under threshold θ, is defined as: 
 

%100)ˆ(PM
2

, 21
×=

T
Ts θθ

xx .       (2) 

 
PM ranges from 0% to 100%, and a larger PM value stands for a potentially better alignment because more positions are 
matched under the threshold θ.  

3.2. The correlation matching (CM) algorithm 
The correlation matching algorithm employs a correlation function to quantify the alignment between x1 and x2.  The 
correlation matching function CMs is defined as the product of the correlation coefficient23 of the overlapping segment of 
the two time series and the ratio formed by dividing the length of the overlapping time series by the length of the second 
time series.  Given a time series x1 of length T1 and a second time series x2,+s of length T2 shifted by s positions and 
overlapping over T* positions, the CMs is calculated by 
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denotes the covariance of two time series y1 and y2 of an equal length T, and 1y and 2y denote the mean values of y1 and 
y2, respectively.  The ratio T*/T2 in Equation (3) penalizes short overlaps between the two time series. Hence, a better 
correlation and a larger overlap between x1 and x2,+s result in a larger CMs . CMs ranges from −1 to 1, with a higher value 
standing for a better match between the two time series.  
 
The CM algorithm evaluates CMs for all potential alignment shifts between RRR, of length TR, and RRC, of length TC, 
and estimates the best alignment shift ŝ associated with the largest CMs .  For example, for respiratory rate time series 
RRR = (20, 26, 27, 18, 22) and RRC = (20, 26, 18, 19, 22) shown in Figure 1(a), the matching scores CMs are 0.31, 0.62, 
−0.40 and 0.40 for alignment shifts s of 0, 1, 2 and 3, respectively. The largest matching score of 0.62 is obtained 
for 1=s .  As a result, a 1ˆ =s means that RRC should be shifted to the right by 1 second to match RRR (as illustrated in 
Figure 1(b)).  Given a matching threshold θ = 2, two positions, 3 and 4, are matched with the alignment shift 1ˆ =s , 
with a corresponding percentage match of 40%.   

θ
21, xxτθ

21, xx
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Figure 1. Alignment of two respiratory rate time series. (a) Unaligned reference and calculated respiratory rates. (b) The 
alignment of respiratory rates from (panel a) after the calculated respiratory rate is shifted to the right by 1 second. 
 

3.3. The landscape matching (LAM) algorithm 
The landscape matching algorithm employs a landscape function to quantify the alignment between x1 and x2.  Let x1 
and x2 be two time series of lengths T1 and T2, respectively, and θ be a matching threshold, defining the landscape 
vector λ , whose value at position t is defined by 
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where, as above, )(kτ , k=1, 2, …, Tθ, denotes the time of the k'th matching position between x1 and x2 defined by 
Equation (1).  In other words, if t is the k'th matching position of x1 and x2 under threshold θ, with )(kt τ= for 

θTk ≤<1 , then λ(t) is assigned the absolute difference of x1's values at the k'th matching position, x1(t), and the 
th)'1( −k matching position, x1(t'), where )1(' −= kt τ ; otherwise λ(t) is set to 0. Hence, λ can be intuitively thought 

as the absolute change in amplitude (or landscape) of two successive matching (not necessary sequential) positions in 
x1.  For example, consider the respiratory rate time series RRR = (20, 26, 27, 18, 22) and RRC = (20, 26, 18, 19, 22) 
from the previous section with θ = 2.  Aligning these two time series with no shifts yields four matching positions 1, 2, 
4 and 5, comprising τ = (1, 2, 4, 5) associated with RRR values of 20, 26, 18 and 22, respectively.  The 
absolute changes of RRR at these four matching positions are 0, 6, 8 and 4, respectively, where the first matching 
position is set to zero according to Equation (5).  The landscape vector is, therefore, λ = (0, 6, 0, 8, 4).  
 
Given a matching threshold θ, the landscape matching function θ,LMs for the alignment of time series x1 of length T1 and 
x2 of length T2 with an alignment shift s is defined as 
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where the label L stands for the landscape matching algorithm.  θ,LMs is a function that measures the difference 
between *1x and *,2 s+x and is adjusted by the elements of the landscape vector λ.  When *1x and *,2 s+x match each other 
perfectly, 0|)()(| *,2*1 =− + txtx s for all t, and the value of θ,LMs reflects the summation of the absolute changes in the 
amplitude of successive *1x and *,2 s+x values, i.e., the elements of the landscape vector λ, over the length of the 
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overlapping time series and, therefore, θ,LMs can be arbitrarily large.  Conversely, when *1x and *,2 s+x are far apart 
and θ>− + |)()(| *,2*1 txtx s for all t, the elements of λ will be zero and θ,LMs can be arbitrarily small.  Thus, θ,LMs >0 and 
has no upper bound.  A larger θ,LMs value reflects a closer match between two time series.  The θ,LMs function also 
depends on the selection of the parameter θ, which is the threshold at which we consider two points to match each other.  
It is useful to choose a θ that has a practical meaning.  For example, expert opinion suggests that a difference of 2 
breaths/min for the respiratory rate is acceptable for a match, and we use θ = 2 breaths/min as a matching threshold to 
align respiratory data in this paper.  
 
The LAM algorithm evaluates θ,LMs for all potential alignment shifts between RRR of length TR and RRC of length TC 
using a fixed θ, and estimates the best alignment shift ŝ associated with the largest θ,LMs .  For example, for the 
previous respiratory rate time series RRR = (20, 26, 27, 18, 22) and RRC = (20, 26, 18, 19, 22) and 2=θ , the matching 
scores 2,LMs are 3.52, 2.18, 0.09, 0.11 and 0.07 for alignment shifts s equal to 0, 1, 2, 3 and 4, respectively. The 
largest 2,LMs of 3.52 is obtained for 0=s .  As a result, 0ˆ =s , means that the best match between RRC and RRR is the 
one requiring no shift, as illustrated in Figure 1(a).  With the matching threshold 2=θ , four positions, 1, 2, 4 and 5, 
are matched, yielding a percentage match PM of 80%.  In this example, the LAM algorithm aligns these two 
respiratory time series with a higher PM than the CM algorithm, which attained a PM of 40%.  

4. RESULTS 
 
We compare the performance of the LAM and CM algorithms by: (1) comparing the alignment results of a typical 
patient; (2) comparing the ability of the two algorithms to return shifted waveforms to their original positions for the 
datasets of the test population; and (3) comparing the algorithms' respective percentage match when aligning the 
respiratory rates for the entire population of patients.   

4.1. Comparison of LAM and CM alignments from a typical patient 
We compare the optimal alignment provided by the LAM and the CM algorithm by using the respiratory rate taken from 
a typical patient (#757).  Figure 2 plots the matching scores 2,L

sM and C
sM for the LAM and CM algorithms, 

respectively, after alignment of the respiratory rate at all possible shift positions.  The matching score 2,L
sM for the 

LAM algorithm has a maximum value of 0.44 at a shift of 431 seconds, while the matching score C
sM for the CM 

algorithm has a maximum value of 0.33 at a shift of 40 seconds.  The percentage matches )2(PM =θ after the shifts are 
70% and 44%, respectively, for the LAM and the CM algorithm, meaning that the alignment obtained by the LAM 
algorithm results in a 26% increase in the number of matching positions when compared with the CM alignment.  
Figure 3 shows the alignment of the RRR and RRC for patient #757 after the shift by each algorithm.  It is clear that 
RRR and RRC match better after a 431-second shift of RRC by the LAM algorithm (lower panel) than the 40-second shift 
suggested by the CM algorithm in the top panel.   
 
In order to examine how the magnitude of θ influences the function of the LAM algorithm, we repetitively calculated 
matching scores θ,L

sM using different values of θ for the same patient (Figure 4).  The results show that although the 
amplitudes of the results are slightly different, their shapes remain very similar, all yielding the same optimal shift for 
this patient.  This example shows that the LAM algorithm is relatively insensitive to the choice of different θ.  It is 
worth mentioning, however, that LAM may generate different optimal shifts using different θ for other patients.  The 
selection of different θ also affects the percentage match PM function, which is used to evaluate the alignments by the 
LAM and the CM algorithms.  We employed different θ matching thresholds of 1, 3, 4 and 5 and calculated the 
respective PM for the previous alignments of patient #757 by both algorithms; the corresponding PMs are 46/27, 81/58, 
86/68 and 89/75, respectively, for the LAM/CM alignment, indicating that the LAM alignment yields a consistently 
better PM than that obtained by CM, regardless of the choice of θ.   
 
 
 
 
 

Proc. of SPIE Vol. 6235  62351B-6



-n7

0 500 1000 1500 2000 2500 3000 3500
Alignment Shift (Seconds)

0 240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880

-9 30(C
> a)

(b) fi
20

0 240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880
Time (Seconds)

 

 

 
 
 

 
 

Figure 2. Tracings of matching scores at all possible shift positions after alignment of respiratory rates for patient 757 by 
the LAM and the CM algorithms.  The LAM algorithm yields a peak score of 0.44 at a shift of 431 seconds, while the 
CM algorithm yields a peak score of 0.33 at a shift of 40 seconds. 

 
 
 
 

 
 

Figure 3. The alignment of reference and calculated respiratory rates by the CM (panel a) and LAM (panel b) algorithms.  
(a) Plot of reference and calculated respiratory rates after a 40-second shift of the calculated respiratory rate, as 
determined by the CM algorithm.  Forty-four percent of the calculated respiratory rates match the reference 
respiratory rates within 2 breaths/min after the shift.  (b) Plot of reference and calculated respiratory rates after a 431-
second shift of the calculated respiratory rate, as determined by the LAM algorithm.  Seventy percent of the calculated 
respiratory rates match the reference respiratory rates within 2 breaths/min after the shift.  
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Figure 4. Tracings of matching scores θ,LMs for the alignment of respiratory rates for patient 757 by the LAM algorithm 
using different matching thresholds θ.  The shapes of the curves are very similar, thought their amplitudes are 
different, and they all find the same shift for this patient.  This result shows that, for this patient, the LAM algorithm is 
relatively insensitive to the choice of θ. 

 

4.2. Comparison of LAM and CM alignments with a known shift 
We compared the performance of the LAM and CM algorithms by computing the difference |ˆ|),ˆD( 00 ssss −= provided 
by each algorithm in the alignment between RRR and RRC for the test population of 67 patients, where the alignment 
shift s0 was known for each time-series record.  The best alignment algorithm is the one yielding the smallest mean 
value of D over the test dataset.   
 
For each of the five test datasets in an r-collection, we aligned all samples with the LAM and the CM algorithms and 
calculated their D values.  The 67 D values obtained by the LAM algorithm for a test dataset are compared to the 
respective 67 D values obtained by the CM algorithm, and the differences are tested for statistical significance using the 
Student's T-test.  The mean and standard deviation (Std) of the 67 D values and the p-values of the Student's T-test are 
averaged over the five datasets in an r-collection and the averaged mean, Std, and p-value corresponding to each r, 
ranging from 0.5 to 1.0, are shown in Table 1.  The results show that for relatively short RRC segments (average <1140 
seconds) obtained for r<0.8, the LAM algorithm generates alignments that yield smaller mean values of D, although the 
difference are not statistically significant for a p<0.05.  However, for longer RRC segments, r≥0.8, the LAM algorithm 
generates alignments significantly (p<0.05) closer to the known shift than the CM algorithm. 
 
With r = 1, which means that the total length of RRC is used for the alignment with RRR, the LAM algorithm yields a 
mean difference D of 44 seconds, which is acceptable considering the presence of some large D-value outliers inflating 
the mean results; the comparable mean D for the CM algorithm is 136 seconds.  When r = 1, the LAM and the CM 
algorithm align 45 (67%) and 37 (55%) of the 67 test patients with D values <15 seconds, respectively, and align 54 
(80%) and 41 (61%) patients with D values <30 seconds, respectively. Therefore, more accurate alignments can be 
obtained by using the LAM algorithm than by using the CM algorithm.  
 

Table 1. Comparison of alignment performance by the LAM and CM algorithms using the test datasets  
with known shifts from 67 patients. 

 
Mean±Std of the difference |ˆ|D 0ss −=  
(seconds, averaged over 5 test-datasets  

in the r-collection) 

r Average length of 
the sampled RRC 

(seconds) 
LAM CM 

p-value of Student's T-test 
(averaged over 5 test-datasets 

in the r-collection) 

0.5 712 184 ± 260 195 ± 295 0.60 
0.6 855 157 ± 230 194 ± 298 0.42 
0.7 997 112 ± 187 162 ± 253 0.20 
0.8 1140 81 ± 140 174 ± 285 0.03 
0.9 1282 54 ± 113 156 ± 260 0.00 
1.0 1425 44 ± 108 136 ± 264 0.01 
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4.3. Comparison of LAM and CM alignments by percentage match 
Respiratory data from all 735 patients were aligned by the LAM and CM algorithms.  The average lengths ± the 
standard deviation for RRR and RRC are 1543±764 and 1367±757 seconds, respectively.  The percentage match PM 
after respiratory rate alignments was calculated, with the best alignment algorithm providing a larger PM.  The average 
PM for the LAM algorithm is 0.18±0.21, and it is 0.13±0.17 for the CM algorithm.  This difference being statistically 
significant at a p<0.05 level with a Student's T-test.  There are 484 (66%), 173 (23%) and 78 (11%) patients that have 
PM values after the LAM alignment that are, respectively, greater than, equal to, and less than the PM values after the 
CM alignment.  A subgroup of 465 patients had CMs and 2,LMs scores that were both greater than 0.1 and were 
considered to have acceptable respiratory rate alignment by each algorithm.  For this subgroup, we computed the PM 
values for each alignment algorithm and compared their results.  The average PM, as calculated by the LAM 
algorithm, is 0.23±0.18, while the average PM value calculated by the CM algorithm is 0.19±0.19 (p<0.05, Student's T-
test).  There are 341 (73%), 50 (11%) and 74 (16%) patients that have PM from the LAM alignment that are, 
respectively, greater than, equal to, and less than the PM from the CM alignment.  The LAM algorithm significantly 
outperforms the CM algorithm in all of the PM comparisons, with a better PM for more then 66% of the patients.   

5. CONCLUSION 
 
We developed a landscape matching LAM algorithm to re-align respiratory waveform and respiratory rate time-series 
data that become misaligned during data recording and/or data manipulation processes.  The algorithm tolerates large 
differences between calculated respiratory rates derived from the same respiratory waveform by different respiratory 
rate calculation algorithms, and accounts for the intermittent matches that occur between the differently-calculated 
respiratory rate time-series data.  Employing multiple performance metrics, the LAM algorithm exhibited consistent 
and significantly better re-alignment performance than an alignment algorithm based on correlation coefficient.  The 
LAM algorithm provides a reliable method for the realignment of noisy respiratory data.  
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