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Abstract

Background: Acute kidney injury (AKI) caused by drug and toxicant ingestion is a serious clinical condition associated
with high mortality rates. We currently lack detailed knowledge of the underlying molecular mechanisms and
biological networks associated with AKI. In this study, we carried out gene co-expression analyses using DrugMatrix—a
large toxicogenomics database with gene expression data from rats exposed to diverse chemicals—and identified
gene modules associated with kidney injury to probe the molecular-level details of this disease.

Results: We generated a comprehensive set of gene co-expression modules by using the Iterative Signature Algorithm
and found distinct clusters of modules that shared genes and were associated with similar chemical exposure
conditions. We identified two module clusters that showed specificity for kidney injury in that they 1) were activated by
chemical exposures causing kidney injury, 2) were not activated by other chemical exposures, and 3) contained known
AKI-relevant genes such as Havcr1, Clu, and Tff3. We used the genes in these AKI-relevant module clusters to develop a
signature of 30 genes that could assess the potential of a chemical to cause kidney injury well before injury actually
occurs. We integrated AKI-relevant module cluster genes with protein-protein interaction networks and identified the
involvement of immunoproteasomes in AKI. To identify biological networks and processes linked to Havcr1, we
determined genes within the modules that frequently co-express with Havcr1, including Cd44, Plk2, Mdm2, Hnmt,
Macrod1, and Gtpbp4. We verified this procedure by showing that randomized data did not identify Havcr1
co-expression genes and that excluding up to 10 % of the data caused only minimal degradation of the gene set.
Finally, by using an external dataset from a rat kidney ischemic study, we showed that the frequently co-expressed
genes of Havcr1 behaved similarly in a model of non-chemically induced kidney injury.

Conclusions: Our study demonstrated that co-expression modules and co-expressed genes contain rich information
for generating novel biomarker hypotheses and constructing mechanism-based molecular networks associated with
kidney injury.

Keywords: Acute kidney injury, Toxicogenomics, Kidney co-expression modules, Gene signature, Havcr1, KIM-1,
Frequently co-expressed genes, AKI pathways, Immunoproteasome, Cd44 ectodomain, AKI networks

Background
Acute kidney injury (AKI) is a clinically relevant disorder
associated with high rates of morbidity and mortality [1].
It reportedly occurs in ~20 % of hospitalized patients and
in 30–60 % of critically ill intensive care patients [2, 3],
increases mortality in military-relevant burn causalities
[4], and often progresses to chronic kidney disease [3]. In

the United States, the annual costs for hospital-acquired
AKI are estimated to be greater than $10 billion [5], and
recent epidemiological studies show a trend towards
increasing occurrence of AKI [6–8]. The lack of suitable
biomarkers is a major hurdle in timely diagnosis of AKI,
especially because drug-induced AKI is often reversible as
long as drug use is discontinued.
Functional markers, such as serum creatinine, blood-

urea-nitrogen, and the volume of urine output, are
currently used to diagnose AKI [2, 9]. These markers have
low sensitivity, lack specificity, result in delayed diagnosis,
and hence, contribute to poor clinical outcomes [2, 10].
Developing suitable pre-clinical markers that could aid in
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earlier identification of AKI will also help reduce the cost
and time associated with advanced drug development
[11]. The Predictive Safety Testing Consortium recently
addressed this issue and developed the first U.S. Food and
Drug Administration (FDA)-approved AKI biomarker
panel for use in pre-clinical studies [12]. While this is a
major advance in the field, our current knowledge of
molecular mechanisms and networks associated with AKI
remains incomplete [13], and the search for new clinical
AKI biomarkers is ongoing [9, 14]. Thus, identifying new
molecular-level insights of kidney injury will help us to
not only understand the disease process but also to iden-
tify new candidate biomarkers.
Extraction of network and pathway information by

using in vivo gene expression datasets from thousands of
chemical exposures and disease conditions can provide
detailed insight into molecular injury mechanisms and
identify the corresponding mechanism-based biomarkers
[15–20]. The diversity and complexity of the in vivo re-
sponse require specialized techniques to extract interpret-
able biological information. Here, we used the Iterative
Signature Algorithm (ISA) to generate gene co-expression
modules associated with AKI [21, 22]. Co-expressed genes
are hypothesized to participate in biological processes and
pathways that are linked together, though not necessarily
through gene co-regulation. The bi-clustering method-
ology identifies gene modules that are clustered together
under a subset of conditions, such that modules that can
be specifically associated with kidney disease conditions
can be hypothesized to be linked to kidney injury
mechanisms. In this formulation, individual genes can
participate in more than one module, because the same
gene will respond differently to different stimuli, leading
to co-expression with different sets of genes [23]. This is
consistent with the concept of a molecular toxicity path-
way, in which a limited number of pathways are differen-
tially activated in response to different injury conditions.
We investigated the DrugMatrix toxicogenomics data-

base, which contains chemically induced gene expression
changes and associated clinical chemistry and organ-
specific histopathology endpoints in male Sprague Dawley
rats [24, 25]. The DrugMatrix kidney Affymetrix dataset
has ~60 million in vivo gene expression data points
associated with diverse chemical exposures. We have
previously used DrugMatrix liver data to identify modules
and networks associated with liver fibrosis and experimen-
tally validated the identified liver fibrosis gene signature
[26–28]. Fielden et al. utilized part of the DrugMatrix
kidney data to develop a predictive gene signature for
kidney injury [29], but to our best knowledge, there are no
reports on identifying co-expression modules associated
with kidney injury from toxicogenomic data. Thus, our
goal in this study was to identify co-expression modules
associated with AKI. Our study was based on two major

hypotheses: 1) a bi-clustering approach should be able to
identify toxicity-relevant co-expression modules in an
unsupervised manner, and 2) genes consistently co-
expressed with known biomarker candidates should
identify biological networks associated with kidney
injuries. We identified AKI-relevant modules that were
activated in chemical exposure conditions causing kidney
injury and which contained well-known AKI-relevant
genes such as Havcr1, Clu, and Tff3. We used the genes in
these modules to 1) generate a signature for predicting
kidney injury that performed better than well-known AKI
biomarkers, and 2) identify pathways and networks of
extracellular matrix (ECM)-receptor interactions, glutathi-
one metabolism, and p53 signaling pathways associated
with kidney injury. Our network analysis identified the
involvement of immunoproteasomes in AKI. To expand
on the knowledge and pathways associated with the well-
known AKI gene Havcr1 [also known as the kidney injury
molecule-1 (KIM1)], we identified genes that were fre-
quently co-expressed with Havcr1 under conditions that
cause kidney injury. We also confirmed that the expres-
sion pattern of these genes was present in an independent
dataset probing rat kidney injuries due to ischemia, not
chemical exposures. These results illustrate the potential
of our approach to identify molecular networks associated
with toxic injury and as a potential source for biomarkers.

Methods
Data collection and preprocessing
We used data from DrugMatrix, a publicly available toxi-
cogenomics database that contains matched gene expres-
sion and histopathology data from Sprague Dawley rats
after exposure to a range of chemicals at different doses
and time intervals [24]. We downloaded the DrugMatrix
data from the National Institute of Environmental Health
Sciences [30] server and focused on the kidney data gener-
ated using the Affymetrix rat 230 2.0 GeneChip array. We
followed the pre-processing protocol as described in our
earlier study [26, 31]. Briefly, we used the R/BioConductor
package affy to perform robust multi-array average quan-
tile normalization and the BioConductor package Array-
QualityMetrics to assess the quality of the microarray data
[32–34]. We renormalized the data after removing 97
arrays that failed on at least one of the three statistical tests
in ArrayQualityMetrics and were thus identified as outliers.
We used the MAS5calls function in the affy package to
obtain the “Present/Absent” calls for each probe set and re-
moved the probe sets that were found to be “Absent” in all
replicates across all chemical exposures [31].
We used the BioConductor genefilter package to remove

genes without EntrezIDs or with low variance across chem-
ical exposures [35]. After calculating the average intensity
across the replicates of a chemical exposure condition, we
computed log-ratios for each gene between treatments and
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their corresponding controls. In the current analysis, we fo-
cused on chemical exposures with greater than 1-day time-
points. This resulted in a final log-ratio matrix of 9,222
genes and 220 chemical exposure conditions.

Generation of gene co-expression modules and module
clusters
We used the ISA implemented in the R/BioConductor
package eisa to generate gene co-expression modules [36].
The three key parameters of this algorithm are 1) starter
seeds, 2) gene threshold, and 3) condition threshold. We
used the R hierarchical clustering package Hclust along with
the dynamicTreeCut package and generated 216 gene clus-
ters [37]. In line with our previous work, random gene sets
were added to the hierarchical gene clusters and expanded
to ~15,000 gene sets [28]. We used both the hierarchical
gene clusters and expanded gene sets as the starter seeds.
The ISA uses gene and condition threshold parameters

for module generation. These two parameters affect the size
and stringency of the modules; i.e., the higher their values,
the smaller and more highly correlated are the modules,
whereas the smaller their values, the larger and less-
correlated the modules [23]. We varied the parameter com-
bination from 2.0 to 4.0 in increments of 0.5, and used 25
combinations of these two parameters to generate the mod-
ules; i.e., for a gene threshold of 2.0, we analyzed the mod-
ules at condition thresholds of 2.0, 2.5, 3.0, 3.5, and 4.0. For
each threshold combination, we normalized the log-ratio
matrix, generated modules, filtered redundant modules,
and ensured module robustness by using the ISAnormalize,
ISAiterate, ISAunique, and ISAFilterRobust functions, re-
spectively. We filtered out gene modules with more than
200 genes and an intra-module correlation of <0.4. Finally,
we merged the modules generated by using all threshold
combinations and removed any redundant modules with
the ISAunique function. Using this procedure, we generated
137 gene co-expression modules. Additional file 1: Script
S1 provides the R script used to generate the ISA modules.
Overlap of genes and chemical exposures is permitted

in the co-expression modules generated using the
process above. Quantifying the level of overlap allowed
us to group similar modules together. Toward this end,
we calculated the overlap of gene and chemical expo-
sures in modules, using the Dice coefficient [38, 39].
Equation 1 shows how we calculated the module overlap
score (OSA,B) between two modules A and B.

OSA;B ¼ 2 � ∣G Að Þ ∩ G Bð Þ∣
∣G Að Þ∣ þ ∣G Bð Þ∣

� �

þ 2 � ∣E Að Þ ∩ E Bð Þ∣
∣E Að Þ∣ þ ∣E Bð Þ∣

� �
ð1Þ

Here, |G(A)| represents the count of genes in module A;
|G(B)| that of genes in module B; |E(A)| that of chemical

exposures in module A; |E(B)| that of chemical expo-
sures in module B; |G(A)∩G(B)| that of genes in com-
mon between modules A and B; and |E(A)∩E(B)| that of
chemical exposures in common between modules A and
B. The overlap score varies between zero and two, where
zero represents no overlap and two represents complete
overlap between the two modules. We created a module
overlap score matrix by calculating the module overlap
scores between all 137 co-expression modules and
performing hierarchical clustering by using the Hclust
package in R. The generated dendrograms were cut at a
specific height (h = 0.5), which resulted in 16 final mod-
ule clusters.

Module cluster characterization
We used activation scores and enrichment of known
AKI-relevant genes to identify AKI-relevant module
clusters. We followed the procedure described in our
earlier work to calculate the module cluster activation
scores [26]. Briefly, we first normalized the values in the
log-ratio matrix of each gene across 220 chemical expo-
sures by converting them to Z-scores. The Z-score of
gene i under chemical exposure condition j is given by

Zi;j ¼ Xi;j � μi
σ i

; ð2Þ

Where Xi,j is the log-ratio value for gene i under chem-
ical exposure condition j; μi is the average log ratio for
gene i across all 220 chemical exposures; and σi is the
standard deviation of the log ratio for gene i across all
220 chemical exposures. Next, we defined eight pheno-
types, two of which were histopathological phenotypes
based on available kidney histopathological data, and the
remaining six of which were chemical exposure classes
based on the pharmacological/toxicological class of the
chemicals. The histopathological phenotypes were
kidney-cortex, tubule, necrosis (P1), and kidney-tubule
regeneration (P2). In these two cases, we chose a
chemical exposure to be representative of the phenotype
if all of its replicates had a histopathology score of ≥2
for the given phenotype.
We defined six chemical exposure classes (hepatotoxi-

cants, fluoroquinolone antibiotics, epidermal growth
factor receptor kinase inhibitors, estrogen modulators,
statins, and fibrates) based on the pharmacological class,
and chose the chemical exposures with the highest dose
for each chemical within a chemical exposure class as
representatives. We provide the chemical exposures used
to define each phenotype/chemical exposure class in
Additional file 2: Table S1. The activation score Am,p of
module cluster m associated with phenotype p is the
mean absolute value of the Z-score for all genes i in
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module cluster m across all conditions j in phenotype p
and is given by

Am;p ¼ 1
NmNp

XNm

i∈m

XNp

j
Zi;j

�� �� ; ð3Þ

Where Nm is the number of genes associated with
module cluster m; Np is the number of chemical expo-
sures associated with phenotype p; and Zi,j is the Z-score
of gene i under chemical exposure condition j associated
with phenotype p.
We collected 57 genes with direct evidence of association

with AKI from the Comparative Toxicogenomics Database
(CTD) [40], 25 of which mapped to the co-expression mod-
ules. We used Fisher’s exact test to calculate the enrichment
of these genes in each module cluster. In this process, we
identified two module clusters (MC7 and MC11) that were
activated in kidney injury conditions and enriched with
known AKI-relevant genes. We refer to these two module
clusters as the AKI-relevant module clusters and their com-
ponent genes as the AKI-relevant gene set.

Generation of gene signature to predict kidney injury
We utilized the AKI-relevant gene set and generated gene
signatures to predict the future occurrence of kidney
injury, using the R package randomForest [41]. Fielden
et al. reported chemical exposures that did not show histo-
pathological kidney injury at 5-day exposure but did show
kidney injury at 29-day exposure [29]. Our training set,
based on these definitions, consisted of 14 nephrotoxic
chemical exposures at early time points and 30 non-
nephrotoxic chemical exposures [29]. We used the AKI-
relevant gene set and developed a random forest-based
classifier model, using 1,001 trees and default settings. To
analyze model performance, we used the standard model
evaluation parameters, such as sensitivity, specificity, and
area under the curve (AUC) for the receiver-operator char-
acteristic (ROC) curve. The ROCR package was used to
generate the AUC-ROC curve [42]. We generated the final
model by using the top 30 genes identified in the initial
run. We separately created models with the Havcr1 and
Clu genes, using the same parameters as those above. We
utilized an independent external dataset from the Toxico-
genomics Project-Genomics Assisted Toxicity Evaluation
System [TG-GATEs] to evaluate the 30-gene signature
[43]. We processed 4- and 8-day high dose kidney expo-
sures from TG-GATEs, using the same procedure as that
described above for processing the DrugMatrix dataset.

Functional enrichment analysis
We utilized the AKI-relevant gene set and carried out
functional enrichment analyses of Kyoto Encyclopedia of
Genes and Genomes (KEGG)/Reactome pathways and
Gene Ontology-Biological Process (GO-BP) terms. We

used the BioConductor package clusterProfiler with default
settings for KEGG and GO-BP enrichment analysis [44],
and the REVIGO webserver with the default semantic
similarity measure (SimRel) to cluster and summarize the
enriched GO-BP terms [45]. We employed the ReactomePA
package for Reactome pathway enrichment analysis [46].

Protein-protein interaction network analysis
We converted the rat Affymetrix probe IDs to human
gene IDs using the BioConductor/R packages annotate
and biomaRt [47]. The R script used for the conversion
of probe IDs to human gene IDs is provided in
additional information (Additional file 3: Script S2). We
used the high-confidence human protein-protein inter-
action (PPI) network with 14,862 unique nodes gener-
ated by using interaction detection based on the
shuffling approach [48]. We used Cytoscape 3.2.1 to
map the AKI-relevant gene set to the PPI network, and
extracted the connected component as an AKI-relevant
sub-network (AKI-SN) [49]. We first analyzed whether
the AKI-SN was obtained by random chance using by
two statistical significance tests [26, 50]. Our null
hypothesis was that the observed number of nodes
(AKI-SNnodes) and edges (AKI-SNedges) in AKI-SN are
obtained by random chance. In the first analysis, we
randomly selected 158 proteins from the human PPI
network 1,000 times and counted the number of nodes
(Rnodes) and edges (Redges) of the largest connected com-
ponent. We calculated the number of times that Rnodes ≥
AKI-SNnodes (Nrandnode). Similarly, we computed the
number of times that Redges ≥AKI-SNedges (Nrandedge).
We then calculated the probability of randomly obtain-
ing a sub-network with a number of nodes comparable
to that of AKI-SN by P = Nrandnode /1,000, and the
probability of randomly obtaining a sub-network with a
number of edges comparable to that of AKI-SN by P =
Nrandedges /1,000. In the second analysis, we scrambled
the human PPI network while preserving the average
node degree and mapped AKI-SN nodes to the random-
ized network. This process was also repeated 1,000
times. As in the first test, we extracted the largest
connected component, counted the number of nodes
and edges, and calculated the probability of obtaining
AKI-SN parameters by random chance.
We next computed the properties of the network, such

as its degree and betweenness centrality. In the PPI
network, nodes represent proteins and edges represent
the interactions/connections between them. The degree
represents the number of interactions associated with the
protein. Proteins with a large degree are known as hub
proteins [51]. Earlier studies have shown that hub proteins
tend to be the essential or key protein in the network [52].
The betweenness centrality (also known as traffic) is a
measure of the number of shortest paths through the node
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and represents the capacity of the node to communicate
with other components of the network [51]. We used the
NetworkAnalyzer option in Cytoscape 3.2.1 to compute
the degree and betweenness centrality of the AKI-SN [53].
We used the MCODE program in Cytoscape to identify
the most inter-connected nodes in the AKI-SN [54].
The Ingenuity Pathways Analysis (IPA; QiagenBioinfor-

matics, Redwood City, CA) software package was used to
determine the gene-function relationships and sub-
anatomical location of the genes and proteins identified in
the sub-networks. The genes identified in the sub-network
analysis were associated with the disease or function
annotations filtered by the search term “renal” in order to
determine the gene-to-function relationships in discrete
anatomical locations of the kidney. Only PubMed identifi-
cations (PMIDs) with significant associations curated by
IPA were included in the anatomical mapping.

Identification of frequently co-expressed genes
Of the 137 gene co-expression modules, 21 contained the
Havcr1 gene. We created a correlation matrix for each of
the 21 modules and selected the 20 % of genes that were
most correlated with Havcr1. We counted the number of
occurrences of each gene across the list of the 21 most
correlated gene sets, and genes that occurred more than
twice were denoted as “frequently co-expressed genes.”
We tested whether these frequently co-expressed genes
could be obtained by random chance. For this, we shuffled
the gene labels in the log-ratio matrix and carried out the
entire analysis from the ISA module generation to identify
frequently co-expressed genes. Subsequently, we analyzed
whether the procedure was robust with respect to noise.
We repeated the entire analysis excluding either 5 % of the
chemical exposures or 10 % of chemical exposures and
calculated the genes frequently co-expressed with Havcr1.

External validation
We further evaluated the relevance of frequently co-
expressed genes with Havcr1, using an external dataset
(GSE58438) collected from Gene Expression Omnibus
(GEO). In this dataset, ischemic kidney injury was
produced by clamping the renal artery [55]. This dataset
contains five control replicates and five replicates of
animals collected at 1 and 5 days after ischemic kidney
injury. We matched the frequently co-expressed genes
and calculated the Spearman correlation between the
average log-ratios derived from chemical exposures that
produced kidney injury in the DrugMatrix database and
those derived from this external dataset.

Results and discussion
Identification of AKI-relevant modules
Figure 1 shows the overall workflow used in this study.
We pre-processed DrugMatrix kidney toxicogenomic data

and obtained a final matrix of 9,222 genes arrayed across
220 chemical exposure conditions. We constructed co-
expression modules by using the ISA approach and sys-
tematically varying the parameters of gene and condition
thresholds from 2.0 to 4.0 in increments of 0.5 (n = 25
different threshold combinations; Fig. 2). We also
performed a separate analysis merging all modules gener-
ated from each threshold combination, removing identical
or redundant modules. The merged set resulted in the
highest percentage of modules enriched with at least one
GO term for the bi-clustering analysis (Fig. 2b). Based on
this analysis, we used the merged set containing 137 gene
co-expression modules in our study (see Additional file 4:
Table S2 and Additional file 5: Table S3 for a detailed list
of the genes and chemical exposures, respectively,
associated with each of the 137 modules). This approach
of using the combination of all threshold parameters
affords the advantages of being unsupervised and
non-parametric, and overcomes potential biases inherent
in using a single parameter value.
The co-expression modules differ from conventional

clusters by allowing the same genes and chemical expo-
sures to be present in multiple modules. We quantified
this overlap between module genes and chemical expo-
sures by using the Dice coefficient (Eq. 1). We clustered
the resultant module overlap score matrix, allowing us
to condense the original 137 modules into 16 distinct
module clusters with high intra-module correlations and
low inter-module correlations (Fig. 3a). We identified
AKI-relevant modules by evaluating the module cluster
activation across two different kidney histopathologies
(P1-P2) and six pharmacological classes of drug or
toxicant exposure that did not produce kidney pathology
(C1-C6) (Table 1). Module clusters 7 and 11 showed
specificity for kidney injury, being activated in kidney
injury phenotypes (i.e., P1 [kidney cortical necrosis] or
P2 [kidney tubular regeneration]) but not after exposure
to drugs or toxicants unassociated with kidney injury
(i.e., C1-C6). Module cluster 10 was excluded from
further analysis because although it was activated in
kidney injury phenotypes P1-P2, it was also non-
specifically activated by compounds not associated with
kidney injury (i.e., hepatotoxicants [C1] and statins
[C4]). We further analyzed module clusters 7 and 11 to
verify that they contained genes recognized in the
literature to be associated with AKI. We calculated the
enrichment of the AKI-associated genes identified in
CTD and mapped them to the module clusters (Table 2).
AKI-relevant genes, including Havcr1, Clu, and Tff3,
mapped to module clusters 7 and 11 but not to other
clusters. Thus, the AKI-relevant gene sets that comprise
these modules are activated in conditions producing
kidney pathology, specific to kidney injury, and enriched
in genes associated with AKI (see Additional file 6: Table
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S4 for the 679 AKI-relevant genes along with their
log-ratio values in the three chemical exposures that
produced the kidney necrosis phenotype (P1)). Taken
together, these data suggest that both modules are
relevant to AKI.
To our best knowledge, this study is the first module-

based analysis of a large public repository of kidney toxi-
cogenomic data. Our unsupervised approach is an advan-
tage in that, unlike standard differential gene expression
analysis, co-expression modules are not associated a priori
with any injury phenotype. The modules we generated
represent a compendium of gene co-expression patterns
in rat kidney tissue after exposure to diverse toxicants
(Additional file 4: Table S2). We used disease-relevant
genes post hoc to prioritize modules rather than following
previously published methods that use known disease-
relevant genes to guide the co-expression analysis a priori
[56]. Our module activation calculations and enrichment
analyses did not influence the gene/condition composition

of the modules because they were performed after we
generated the modules. As such, the module genes, i.e.,
genes co-expressed with known AKI-relevant genes, can
be hypothesized to participate in biological processes/dis-
ease mechanisms relevant to kidney-specific injuries.
When we analyzed the chemical exposures that define the
modules in AKI-relevant module clusters, the results in-
cluded well-known nephrotoxic chemicals/drugs (e.g., cis-
platin, lead-II-acetate, calcitriol, cholecalciferol, netilmicin,
vancomycin, and oxaliplatin; Additional file 7: Table S5)
[5]. We used the AKI-relevant gene set to carry out two
separate analyses: 1) identification of gene signatures by
using a supervised classification approach; and 2) identifi-
cation of the pathways and networks associated with AKI.

Generation of predictive gene signature for AKI
We used the AKI-relevant gene set along with the
random forest approach to generate gene signatures that
could predict the future onset of AKI. Although the

Gene
signature

Pathway and network
analysis

Frequently co-expressed
genes

Acute kidney injury (AKI)-relevant
co-expression modules

DrugMatrix – kidney data

Co-expression modules
generation/prioritization

0.6

Fig. 1 Workflow used in this study to mine kidney toxicogenomic data

Fig. 2 Iterative signature algorithm (ISA) parameter selection. a Number of modules generated for different combinations of gene and sample
thresholds and for the merged results. b Percentage of modules enriched with gene ontology (GO) terms for different threshold values and
merged results. “All,” merged result from all threshold combinations; %MGO, the percentage of modules enriched with GO terms; Nm, the number
of modules generated
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nephrotoxicants in our training data did not show any
kidney injury at 3 to 5 days of exposure, they are known
to produce kidney injury after 28 days of exposure [29].
Thus, the task is to use the data at early time points to
predict the probability of injury before the injury actually
occurs. We used the random forest approach to predict
the probability of later injury on the basis of the data at
early time points. The random forest approach is an
ensemble-based decision-tree model that has been
widely used in the analysis of omics data [57–60]. The
main advantages of this approach are its ability to 1)
handle problems with small sample sizes and a large
number of variables and 2) provide a measure of variable
importance [57]. In the random forest approach, each tree
is generated with a random subset of the data and a
prediction is made for the left-out data that are not used in
the tree generation. This out-of-bag (OOB) testing provides
an error estimate and is equivalent to cross-validation
analysis [60]. Our random forest approach identified the

Fig. 3 a Heat map view of modules clustered based on the module overlap score. b Activation of module clusters (MC1-16) for different
phenotypes (P1-2) and chemical classes (C1-6). P1, chemical exposures that cause kidney-cortex, tubule, necrosis; P2, chemical exposures that
cause kidney-tubule, regeneration; C1, chemical exposure known to cause hepatotoxicity; C2, fluoroquinolone antibiotics; C3, epithelial growth
factor receptor kinase inhibitors; C4, estrogen receptor modulators; C5, high dose of statin drugs; C6, high dose of anti-lipidemic drugs (fibrates)

Table 1 Phenotypes and chemical exposure classes used in the
analysis of module cluster activation

Name Class

P1a Kidney-cortex, tubule, necrosis

P2a Kidney-tubule, regeneration

C1 Hepatotoxicants

C2 Fluoroquinolone antibiotics

C3 Epithelial growth factor receptor
kinase inhibitors

C4 Estrogen receptor modulators

C5 Statins

C6 Fibrates
aP1 and P2 were defined based on histopathology data

Table 2 Enrichment of known acute kidney injury (AKI)-relevant
genes in module clusters

Module
cluster

No. of genes
in module cluster

No. of
AKI genes

p-value AKI-relevant genes

1 184 0 1.00 -

2 164 1 0.67 CYP2D6

3 217 7 0.0008 ALB, AMBP, CYP2C19,
CYP2C9, CYP2D6,
FABP1, GSTP1

4 181 0 1.00 -

5 70 0 1.00 -

6 286 1 0.88 PPARG

7 273 7 0.002 B2M, CD44, GPNMB,
G6PD, GSTP1, HAVCR1,
TFF3

8 197 1 0.78 HEXB

9 320 0 1.00 -

10 136 0 1.00 -

11 517 10 0.002 A2M, CLU, CD44,
GPNMB, GAS6,
HAVCR1, LCN2, SPP1,
TNFRSF12A, TFF3

12 217 0 1.00 -

13 509 2 0.89 AMN, OCLN

14 509 5 0.34 A2M, EPO, GSTM2,
LCN2, SPP1

15 379 0 1.00 -

16 181 0 1.00 -
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top 30 genes that provide the best classification accuracy
with the variable importance measure (i.e., the mean de-
crease in accuracy; see Additional file 8: Table S6).
Next, we used these 30 genes to develop a classification

model. The final model had a sensitivity of 86 %, specifi-
city of 93 %, AUC of 0.91, and OOB error estimate of
9.1 % (Fig. 4). This performance estimate is overly opti-
mistic, because the 30-gene signature was evaluated by
using the same set as that used in gene prioritization [43].
We compared the performance of this signature with
known biomarkers by developing separate models, using
just the Havcr1 or Clu gene. In ROC curve comparisons,
the 30-gene signature model had better predictive
potential than models that used only the Havcr1 or Clu
gene (Fig. 4). Importantly, our gene signature included
both genes previously associated with kidney injury (e.g.,
Havcr1) and potentially new biomarkers of kidney injury
(e.g., Irf6). The model with Havcr1 alone had a sensitivity
of 57 %, specificity of 80 %, AUC of 0.64, and OOB error
estimate of 27.3 %. The model with Clu alone had a sensi-
tivity of 50 %, specificity of 66.7 %, AUC of 0.59, and OOB
error estimate of 38.7 %. The 30-gene signature model
had a sensitivity of 83 %, specificity of 75 %, and accuracy
of 79 % in classifying an independent external dataset of

38 chemical exposures with 3 days of exposure duration
(see Additional file 9: Table S7). Thus, overall the model
shows good performance in predicting the future onset of
kidney injury. We observed a decrease in performance at
later time points after the injury was well-established (see
Additional file 9: Table S7). Overall, our results are
comparable to those of a prior study reporting that a 35-
gene signature predicted kidney injury by using a different
array platform. However, 13 of 35 of the genes in that study
could not be identified and were labeled only as EST [29].
Besides Havcr1, the literature includes reports of

associations between the genes in our signature and
AKI. Guca2a, a gene that codes for guanylate cyclase 2a,
was upregulated in gentamicin-induced kidney toxicity
[61]. The protein encoded by gene Ugt2b7 [uridine
diphosphate glucuronosyltransferase (UGT)], one of the
two most abundantly expressed renal UGTs, is known to
play a significant role in glucuronidation of drugs and
endogenous mediators associated with inflammation [62].
The gene Ly96 (lymphocyte antigen 96) encodes a protein
that interacts with toll-like receptor 4 (TLR4), a key
mediator in nephrotoxicity. Tlr4 -/- mice are less prone to
ischemic kidney injury than are wild-type littermates
[63, 64]. TLRs induce the expression of PVR (also
known as CD155), another gene present in our gene
signature [65]. TLR4 signaling can lead to activation of
interferon regulatory factors (IRFs) [65]. IRF1 promotes
inflammation after ischemic AKI [66]. Furthermore, the
Map4k4 gene in our signature encodes a kinase involved
in the TNF-signaling pathway, which is also known to play
a role in kidney injury [67]. Irf6 in our signature is
functionally related to TLR4 signaling but has not previ-
ously been associated with AKI; it may represent a novel
biomarker of kidney injury. Thus, the literature provides
supporting evidence that all of the genes in our signature
are relevant to predicting kidney injury.

Functional enrichment analysis
We identified the pathways associated with the AKI-
relevant gene set, using KEGG and Reactome pathway
enrichment analysis (Tables 3 and 4, respectively). The
enriched KEGG pathways of ECM-receptor interactions
[68, 69], cell adhesion, and focal adhesion pathways repre-
sent known disease processes of AKI associated with loss of
attachment to the basement membrane, changes in actin
cytoskeletal structure, and loss of cell-cell contacts due to
redistribution of cell adhesion molecules and integrins [70].
The p53 signaling pathway plays a key role in cisplatin-
induced kidney damage [71]. The bile secretion pathway
mapped many transporters associated with kidney injury
(e.g., Slc21a4 and Abcc2 [72]). Glutathione depletion is
consistent with kidney injury [73], and the retinoic acid-
inducible gene-1 (RIG-1) signaling pathway modulates
immune and inflammatory responses in renal diseases [74].

Fig. 4 Receiver Operator Characteristics for the 30-gene signature,
Havcr1, and Clu. The model uses early (1–5 days) transcription data
to predict the future onset of kidney injury (at 28 days). The
true positive rate is the rate of true predictions divided by true
predictions and false positives; the false positive rate is the rate of
false predictions divided by the false predictions and false negatives.
The diagonal line indicates random predictions
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We mapped the individual genes in the AKI-relevant
gene set to the KEGG pathways listed in Table 3 (Fig. 5).
Individual genes reported in AKI are evident in this
network (e.g., Spp1, Cd44, Gstp1, Gstm1, Icam1, Mdm2,
Abcc2, and Ccl5 [75–78]). Of note, several genes associ-
ated with programmed cell death in AKI [5] mapped to
related pathways: the apoptosis-related genes Fas, Casp3,
and Casp8 mapped to the p53 signaling pathway; Ripk3,
a key mediator of necroptosis, mapped to the cytosolic
DNA-sensing pathway; and Tnfrsf1a, a gene associated
with inflammation and apoptosis, mapped to the toxo-
plasmosis pathway. Similarly, the enriched GO-BP terms
for the AKI-relevant gene set identified AKI-related
biological processes, such as the immune response,
glutathione metabolism, and cell killing (Table 5). These
results suggest that co-expression module-based analysis
offers richer information than conventional differential
gene expression analysis. Pathway enrichment analysis of
the differentially expressed genes in chemical exposures
that produce kidney injury (P1 and P2) could only identify
a limited number of pathways and missed pathways re-
lated to ECM receptor interaction, cell adhesion, the RIG-
1-like receptor signaling pathway, and toxoplasmosis (see
Additional file 10: Table S8). Moreover, the number of
genes that mapped to AKI-relevant pathways was higher

in co-expression module-based analysis than in differential
gene expression analysis.

PPI network analysis
We carried out integrated analysis of gene expression
data with PPI networks to generate disease-specific
networks and gain new insights. We mapped the AKI-
relevant gene set to the human high-confidence PPI
network and extracted the connected component as a
sub-network (AKI-SN) with 158 nodes and 196 edges,
organized by cellular location (Fig. 6). We performed
statistical significance tests based on random sampling
and permutation to confirm that AKI-SN could not have
been generated by random chance (Additional file 11:
Figure S1). We calculated the statistical (or topological)
properties of degree and betweenness centrality for all
158 proteins in AKI-SN (Additional file 12: Table S9),
and ranked the proteins in the network according to
these two properties (Additional file 13: Table S10). In
network analysis, hub proteins represent proteins with a
large degree (i.e., with the highest number of connec-
tions) and are hypothesized to play a key role in the
network. Betweenness centrality (also known as traffic)
represents the capacity of a protein node to facilitate in-
teractions among members of the network, and is used
to identify “communication hotspots” in the network
[51]. The hub nodes with more than 5 connections were,
in order of decreasing connectivity, protein products of
the following genes: Isg15, Fn1, Anxa7, Actn1, Casp8,
Ar, A2m, Casp3, Stat3, Lck, Cdkn1a,Vim, Ccr1, and Flna
(see orange stars in Fig. 6). Many of these proteins are
involved in AKI through a number of different biological
processes, including the induction of apoptosis through
Casp8 and Casp3 for nephrotoxic drugs [79], obstruc-
tion of tubular lumen by Fn1 [80], and dysregulation of
cytosolic calcium levels linked to Anxa7 in connection
with acute tubular necrosis [81–83]. The topmost hub
node (n = 14 connections in the AKI-SN) was Isg15
(interferon-stimulated gene 15), associated with apop-
tosis [84] and nephrotoxicant exposure in fish orthologs
[85, 86]. Combined with this limited evidence in the
literature, our network analysis predicts that Isg15 may
be a key AKI-related gene. We ranked the AKI-SN
proteins according to betweenness centrality and identi-
fied non-hub nodes such as Clu, Cd44, and Gsn (see the
green stars in Fig. 6). The protein products of Clu and
Gsn (gelsolin) are well-documented biomarkers of AKI
[80, 87]. The protein product of Cd44 is a cell-surface
glycoprotein receptor and acts as an adhesion molecule;
Cd44 and its ligand Spp1 (osteopontin) are upregulated
after ischemic kidney injury [88]. Our network analysis
identified this node as a critical component of the AKI-
SN despite the limited number of connections. In the
AKI-SN, we captured the interaction between Cd44 and

Table 3 KEGG pathway enrichment for the acute kidney injury
(AKI)-relevant gene set

Pathway Count p-valuea

ECMb-receptor interaction 14 9.10−5

Glutathione metabolism 11 4.10−4

Cell adhesion molecules 16 0.012

Bile secretion 10 0.012

Cytosolic DNA-sensing pathway 7 0.026

Cysteine and methionine metabolism 6 0.026

p53 signaling pathway 9 0.026

RIG-Ic-like receptor signaling pathway 8 0.029

Toxoplasmosis 12 0.039

Amoebiasis 10 0.039

Focal adhesion 15 0.046

Metabolism of xenobiotics by cytochrome P450 8 0.046
ap-value after Benjamini-Hochberg multi-test correction, bExtracellular matrix
cRetinoic acid-inducible gene-1

Table 4 Reactome pathway enrichment for the acute kidney
injury (AKI)-relevant gene set

Pathway Count p-valuea

Extracellular matrix organization 21 0.001

Degradation of the extracellular matrix 11 0.014

Cell junction organization 9 0.025
ap-value after Benjamini-Hochberg multi-test correction
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Spp1 (both upregulated). In addition to hub and high-
traffic nodes, other AKI-associated genes mapped to
AKI-SN (e.g., Lgals3, Mdm2, S100A11, S100A10, SDC1,
and A2M [80, 89, 90] and the chemokine genes Ccl2,
Ccl5, and Ccl23) [91]).
Next, we identified the highly interconnected regions in

AKI-SN (Additional file 14: Figure S2). The most intercon-
nected regions in disease-specific networks have been
shown to capture disease-associated candidate genes [92].
The most interconnected region in AKI-SN contained the
protein products of genes Psmb8 (LMP7), Psmb9 (LMP2),
Psmb10 (MECL1), and Tap1, which are involved in antigen
processing and presentation (see the red star and circle in
Fig. 6). The proteins of Psmb8, Psmb9, and Psmb10 form
the immunoproteasome—an alternative form of the normal
constitutive proteasome—which is induced by interferon
(IFN)-γ and TNF-α [93]. Immunoproteasomes are more
efficient than constitutive proteasomes at eliminating
damaged cellular proteins under severe stress or other
pathological conditions, and are considered as promising
drug targets in certain cancers and auto-immune diseases
[93, 94]. Interferon regulatory factor-1 (IRF1) is a transcrip-
tion factor that regulates the IFN-γ-mediated upregulation
of immunoproteasome sub-units [95]. The protein product
of the gene Irf1 mapped to the AKI-SN (located in the
nucleus region of Fig. 6), and was upregulated together with
the immunoproteasome sub-units present in the network.
As immunoproteasomes are promising drug targets, we
further evaluated the expression of immunoproteasome
sub-units across all 220 chemical exposures. We found that

Fig. 5 Genes in the acute kidney injury (AKI)-relevant gene set mapped to the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The
color of the gene nodes indicates the log2-fold change and the connecting lines represent membership in the KEGG pathways (P1-P12) listed in Table 3

Table 5 Gene Ontology (GO)-biological process (BP) term
enrichment for acute kidney injury (AKI)-relevant gene seta

Pathway log10 p-value

Immune response −5.01

Defense response −4.47

Response to virus −4.02

Immune system process −3.57

Response to external stimulus −3.57

Response to stimulus −3.57

Response to biotic stimulus −3.50

Multi-organism process −3.35

Response to cytokine −3.32

Regulation of viral process −3.17

Response to interferon-beta −2.89

Response to organic substance −2.79

Viral genome replication −2.74

Single-organism process −2.74

Response to chemical −2.67

Regulation of symbiosis −2.48

Cellular response to interferon-beta −2.41

Response to interferon-alpha −2.39

Glutathione metabolic process −2.89

Nucleobase-containing small molecule metabolic process −2.08

Positive regulation of cell-killing −2.43

Cell-killing −2.12
aEnriched GO-BP terms were clustered and summarized by using REVIGO
webserver [45]

AbdulHameed et al. BMC Genomics  (2016) 17:790 Page 10 of 17



immunoproteasomes were upregulated by confirmed
nephrotoxicants (e.g., lead-II-acetate, lead-IV-acetate,
netilmicin, cisplatin, vancomycin, cholecalciferol, neomy-
cin, gentamicin, and 2-amino-nitro-phenol; Additional file
15: Table S11). Analysis of chemical exposures associated
with downregulation of immunoproteasome gene expres-
sion showed an interesting class effect: Anticancer drugs
such as methotrexate as well as anthracycline anticancer
agents, such as doxorubicin, daunorubicin, and epirubicin,
were associated with diminished expression of genes re-
latedtoimmunoproteasomes.
The AKI-SN also contained regulatory elements of

immunoproteasomes related to the TLR and TNF sig-
naling pathways. The Irf-class of transcription factors are
master regulators of TLRs and RIG-1 signaling pathways

[96]. Genes of this class (e.g., Irf1, Irf6, and Irf9) mapped
to the AKI-SN network in the nucleus. Components
SPP1, LBP, and CCL5 of the TLR signaling pathway [97],
located in the extracellular region and plasma membrane,
were also upregulated. The presence of the TNF signaling
pathway [67] in our network revealed a sequential connec-
tion between TNFRSF1A in the plasma membrane
(marked with a blue star in Fig. 6) and BIRC3, RIPK3, and
CASP3 in the cytosol. The bulk of these components
showed strong upregulation, indicative of a strong and
persistent immune and inflammatory response to the
chemical insults. Our results are concordant with earlier
studies that have documented potential immunoprotea-
some involvement in patients with IgA nephropathy [98]
and patients rejecting renal transplants [99].

Fig. 6 Acute kidney injury (AKI)-relevant human protein-protein interaction sub-network. The protein nodes are distributed according to cellular
localization. The size of the node represents the number of connections in the sub-network. The nodes are colored according to the average log2
fold-change ratio in chemical exposures that cause kidney necrosis. Proteins encoded by genes with average log2 fold-change ratios greater than
0.6 are shown in red. Proteins encoded by genes with average log2 fold-change ratios between 0.6 and −0.6 are shown in grey. Proteins encoded
by genes with average log2 fold-change ratios less than −0.6 are shown in green. Orange stars denote hub proteins with >5 connections, green
stars denote non-hub proteins with a high betweenness centrality (>0.09). The red star and dotted circle identify the highest interconnected region
of the network associated with the immunoproteasome
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Anatomical location
The Predictive Safety Testing Nephrotoxicity Working
Group recently published criteria for a renal safety
biomarker. One of the key characteristics is the ability of
the biomarker to accurately localize damage to discrete
anatomical units within the kidney architecture [10]. A
literature review determined which potential biomarkers
in our AKI-SN of 158 genes have been mapped to
specific anatomical locations in the kidney (Fig. 7;
Additional file 16: Table S12). The genes Spp1, Lgals3,
Fn1, CD44, and Bmp4 have been associated with the
proximal tubular region of the kidney by microarray
analysis and mouse gene knockout studies with
experimentally induced acute kidney injury [100, 101].
Genes associated with glomerular injury included Ccl2,
Cdkn1a, Clu, Mmp14, Spp1, and Tnfrsf1a. [102–107]
(see Additional file 16: Table S12 for complete results of
the IPA gene-to-function literature analysis).

Frequently co-expressed genes with Havcr1
We used our module-based analysis to identify network
constituents of the FDA-qualified pre-clinical biomarker
of AKI, Havcr1 (commonly known as kidney injury
molecule-1 or KIM-1). Modules were defined by using a
variety of chemical exposures, and genes that co-
expressed with one particular query gene under diverse
chemical exposures helped to identify new genes that
participate in the same pathway or biological process.
Thus, we identified 33 genes that frequently co-expressed
with Havcr1, i.e., the “Havcr1-co-expression gene set”
(Fig. 8). Genes including Cd44, Anxa2, Anxa7, and
Mdm2, which have been documented in AKI [101], were
upregulated. We first ascertained that the Havcr1-co-

expression gene set could not be identified from shuffled,
randomized data (see Methods). We further analyzed the
robustness of the gene set by leaving out either 5 % or
10 % of the chemical exposures and rerunning the
analysis. In the leave-out 5 % analysis, Il24 dropped out of
the gene set and A3galt was identified the least number of
times. In the leave-out 10 % analysis, Cadps2 dropped out
of the gene set, and Il24 and A3galt were identified most
infrequently. Overall, our analysis showed that the set of
33 genes that frequently co-expressed with Havcr1 was
significantly different from that expected by chance and
robust with respect to its composition. Although most
genes were unaffected, genes such as Il24, A3galt, and
Cadps2 could be de-prioritized. Our literature review
confirmed that many genes in the Havcr1-co-expression
gene set are associated with kidney injury. Of particular
note was the potential for cross-regulation between Cd44
and Havcr1. Cd44 is not detectable in normal kidneys, but
is expressed in the proximal tubule after acute ischemic
injury [64]. Cd44 is a cell adhesion molecule involved in
biological processes similar to Havcr1, including the
ability to phagocytose apoptotic cells [108], and its
downregulation by NF-κB through the PI3K pathway.
With Cd44, Macrod1 in the network is also an essential
gene for NF-κB activation [109]. Cd44 mediates both
phagocytosis of apoptotic cells [110] and anti-apoptotic
signaling through the PI3K pathway [111], including PKC
activation and influx of extracellular calcium after
proteolytic cleavage of its ectodomain [112]. The evidence
for possible cross-regulation between Cd44 and Havcr1,
including analysis of cleaved ectodomain fragments of
Cd44 as urinary marker of AKI, is a potentially testable
hypothesis in future studies.

Fig. 7 Acute kidney injury-subnetwork genes associated with different anatomical regions of the kidney
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We used an external rat kidney ischemic injury dataset
from GEO to compare expression levels for the Havcr1-
co-expression gene set across data sets. The external rat
kidney ischemic injury dataset correlated strongly with the
Drug-Matrix fold-changes, showing Spearman correlation
coefficients (rs) of 0.75 and 0.72 at 1 and 5 days after in-
jury, respectively (Fig. 9).

Conclusions
Publicly available toxicogenomic datasets are valuable re-
sources that help in data mining and identifying networks,
mechanisms, and biomarkers associated with a disease. In
this analysis, we studied the rat kidney toxicogenomic data
from DrugMatrix and identified co-expression modules

associated with kidney injury. Our work provides a com-
pendium of kidney co-expression modules and is the first
such analysis of kidney toxicogenomic data. We used the
co-expression modules to identify a 30-gene signature that
predicted the future onset of kidney injury from early gene
transcription data. Although some of the genes in our
signature are associated with the mechanism of AKI, we
also identified genes such as Irf6 as potentially novel
candidates for AKI. Systems-level analyses identified
pathways and networks associated with AKI. We identi-
fied AKI-relevant pathways, such as ECM receptor inter-
action and the RIG-1 signaling pathway, and showed that
co-expression module-based approaches can identify add-
itional information not obtainable by standard differential

Fig. 8 Frequently co-expressed genes with Havcr1. The size of the node represents the number of times the gene was co-expressed with Havcr1 in
the modules. The nodes are colored according to the average log2 fold-change ratio in chemical exposures causing kidney necrosis. Proteins encoded
by genes with average log2 fold-change ratios greater than 0.6 are shown in red. Proteins encoded by genes with average log2 fold-change ratios
between 0.6 and −0.6 are shown in grey. Proteins encoded by genes with average log2 fold-change ratios less than −0.6 are shown in green

Fig. 9 Scatterplots of log2 fold-change ratio for the genes in the Havcr1-co-expression gene set from the DrugMatrix data (x-axis) and an external
rat kidney ischemic injury data set (GSE58438) (y-axis) at a) 1 day and b) 5 days after ischemic injury. The gene set is highly correlated in both
data sets at both 1 and 5 days after ischemic injury, indicating a similar response to both chemically and non-chemically induced kidney injuries
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gene expression analysis. We identified an AKI-relevant
protein interaction sub-network that mapped many
known genes involved in AKI. Our network analysis
revealed the involvement of immunoproteasomes in AKI
and identified new genes, such as Isg15 and Anxa7, not
previously associated with this disease. Finally, we used
our co-expression modules to identify the frequently
co-expressed genes with known biomarker Havcr1.
Overall, our analyses show the potential utility of using
co-expression modules in characterizing molecular mech-
anisms involved in AKI and identifying novel mechanism-
based biomarker candidates.
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