
Exploring Polypharmacology Using a ROCS-Based Target Fishing
Approach
Mohamed Diwan M. AbdulHameed,* Sidhartha Chaudhury, Narender Singh, Hongmao Sun,
Anders Wallqvist, and Gregory J. Tawa*

Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research
Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702, United States

*S Supporting Information

ABSTRACT: Polypharmacology has emerged as a new theme
in drug discovery. In this paper, we studied polypharmacology
using a ligand-based target fishing (LBTF) protocol. To
implement the protocol, we first generated a chemogenomic
database that links individual protein targets with a specified
set of drugs or target representatives. Target profiles were then
generated for a given query molecule by computing maximal
shape/chemistry overlap between the query molecule and the
drug sets assigned to each protein target. The overlap was
computed using the program ROCS (Rapid Overlay of
Chemical Structures). We validated this approach using the Directory of Useful Decoys (DUD). DUD contains 2950 active
compounds, each with 36 property-matched decoys, against 40 protein targets. We chose a set of known drugs to represent each
DUD target, and we carried out ligand-based virtual screens using data sets of DUD actives seeded into DUD decoys for each
target. We computed Receiver Operator Characteristic (ROC) curves and associated area under the curve (AUC) values. For the
majority of targets studied, the AUC values were significantly better than for the case of a random selection of compounds. In a
second test, the method successfully identified off-targets for drugs such as rimantadine, propranolol, and domperidone that were
consistent with those identified by recent experiments. The results from our ROCS-based target fishing approach are promising
and have potential application in drug repurposing for single and multiple targets, identifying targets for orphan compounds, and
adverse effect prediction.

1. INTRODUCTION
Polypharmacology has emerged as a new theme in drug
discovery.1−4 In contrast to the traditional view of one drug
against one target, polypharmacology focuses on the fact that
one drug can hit multiple targets.1 Polypharmacology is
desirable in the case of complex diseases that involve functional
modulation of multiple proteins such as cancer.5 Identification
of compounds that interact with multiple proteins in a par-
ticular disease network may be a good starting point for drug
discovery. However, protein targets outside of these networks
may interact with putative drugs. This may either cause
unwanted side effects or it may help in the modulation of
different diseases. Therefore, identification of these off-target
proteins may facilitate drug repurposing and the determination
of toxic liabilities. Identifying new indications for old drugs was
reported to be the best and most economical way to bring a
drug to market.6

Computational approaches have traditionally focused on
studying ligand interactions with a single target and have been
successfully used in lead identification and optimization studies.7,8

These methods complement much more expensive experimental
approaches to drug design and have been integrated into virtually
all modern drug-discovery programs. Similarly, computational off-
target profiling methods or “target fishing” are complementary to

the experimental screening approaches. It is not possible to test
each compound against every possible target. The application
of computational approaches in off-target prediction has been
reviewed.9,10 Many structure-based target fishing (SBTF)
approaches, such as INVDOCK11 and Target Fishing Dock
(TarFisDock),12 are reported in the literature.8 The basic idea
behind SBTF is the inverse of docking. In the usual docking
experiments, a set of ligands is docked into a particular target,
and the results are ranked by docking score. However, in SBTF,
a single ligand is docked into many targets, and the potential
targets are ranked by docking8,12,13 or Z-score.14 SBTF approaches
are of limited utility for major drug targets like G-protein coupled
receptors (GPCRs) and ion channels, because their crystal
structures are not available. Nearly 50% of all recently launched
drugs were reported to target GPCRs.15 Furthermore, issues
such as protein flexibility and the treatment of water-mediated
interactions in the active site are other limiting factors of this
approach.
Ligand-based target fishing approaches do not have these

limitations. For many targets that do not have an experimentally
determined structure, there is still a known set of active ligands.
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This allows the application of ligand-based approaches in the
study of a wide variety of targets. The fundamental idea
underlying ligand-based approaches is that two similar ligands
are likely to have similar target-binding profiles. Ligand-based
target fishing approaches utilize either similarity-based screen-
ing or machine learning models. Similarity-based target fishing
is conducted by determining the protein targets for screening,
identifying ligands to represent those targets, and choosing
the similarity method for comparing ligands. Keiser et al. have
used 2D-similarity searching along with a BLAST-like statistical
model to successfully predict the off-targets of a set of known
drugs.16,17 Scitegic ECFP4 and Daylight topological fingerprints
were used as the descriptors for the similarity search.17 Nettles
et al. have used feature point pharmacophores (FEPOPS) and
highlighted the ability of the 3D similarity search approach to
identify novel scaffolds.18 Multiple-category Bayesian modeling,
Shannon Entropy Descriptors (SHED), and morphological
similarity have also been used to carry out target fishing.19−21

Among 3D-similarity search approaches, the ROCS program22

is considered to be a de facto standard. There are many reports
on the successful application of ROCS in lead identification and
optimization.23−26

In this paper, we have explored the application of ROCS in
target fishing. We used public data sources including Drug
Bank27 and the Kyoto Encyclopedia of Genes and Genomes
(KEGG)28 to create a chemogenomic database linking drug
molecules to protein targets. This allowed us to develop a ligand-
based target fishing (LBTF) protocol using the ROCS program.
We have extended the group fusion and inverse docking
approaches to develop our ROCS-based target fishing (RBTF)
approach. Group fusion refers to the use of multiple reference
structures in a similarity search. On the basis of our database
annotation, multiple reference structures were used to represent
the targets. Typically, one or more query molecules are screened
against multiple target sets. This is the inverse of traditional ligand-
based screening approaches. We first validated this approach using
the Directory of Useful Decoys (DUD) data set.29 We found
that, for the majority of targets, the enrichment of known actives
was significantly higher using RBTF than that for which a
random selection of compounds was used as the screening

method. We used the RBTF method to generate a drug−target
matrix. For a subset of drugs in our matrix, we identified off-
targets that were recently reported in the literature.
To the best of our knowledge, this study is the first to use the

3D-shape/chemical similarity analysis program ROCS to
generate off-target profiles of drugs. The results demonstrate
that a shape and chemical similarity-based target fishing approach
using a robust drug−target matrix can successfully identify off-
targets. The methodology has potential application in the prediction
of toxicity, identification of targets of orphan compounds, and drug
repurposing.

2. METHODS

2.1. Creation of a Chemogenomic Database. In order
for a chemogenomic database to be amenable to automated
data mining, it must contain a clear annotation of targets and
chemical structures.10 The annotation will be necessary to dis-
tinguish drug target and compound classes such as bacterial
targets from human targets or antibiotics from cardiovascular
drugs. We used Drug Bank to obtain the initial drug-target
information, and a detailed literature survey identified 245 of
these targets as primary drug targets.30,31 The drug targets were
grouped according to biochemical classification into 13 major
classes (Figure 1 shows the major target classes). Overall, our
coverage of primary therapeutic targets agrees with the previous
report of Imming et al.30 There are 20 targets that have at least
one known approved drug molecule, 17 targets that have two
known drug molecules, and 208 targets that have three or
more drug molecules which are known to interact with them
(Figure 2). We have also included the species information for
the drug targets, identifying particular drug targets as bacterial,
viral, or human. The Drug Bank “target ID” was used as the
standard nomenclature for the targets.
Approved drug molecules obtained from the Drug Bank

database were filtered using the Filter module of the OpenEye
Scientific Software32 to remove protein-based therapeutics
such as insulin and oxytocin. Filtering was carried out with
the following parameters: molecular weight (150 to 800), ring
systems (0 to 10), number of carbons (5 to 40), rotatable
bonds (0 to 15), and allowed elements (H, C, N, O, F, S, Cl,

Figure 1. Number of targets in different target classes. Drug targets were grouped into 13 major classes. Abbreviations: LGICR, ligand-gated ion
channel receptor; GPCR, G-protein coupled receptor; NR, nuclear receptor; IC, ion channels; TP, transporters; OR, oxido-reductase enzymes; K,
kinases; OT, other transferses; PR, proteases; ES, esterases; OH, other hydrolases; LY, lyases, ligases, and isomerases; O, others.
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Br, and P). After filtering, a final database of 1150 approved
drug molecules was obtained. The approved drug molecules
in our database were grouped into 14 major classes according
to the anatomical therapeutic chemical (ATC) classification
system of the World Health Organization (WHO).33 Drug
Bank and KEGG were used to obtain the ATC codes of the
drugs. In the ATC system, drugs are categorized into groups at
five different levels, namely the following: (1) anatomical main
group, (2) therapeutic subgroup, (3) pharmacological subgroup,
(4) chemical subgroup, and (5) chemical substance. The first
level, which indicates the anatomical main group, consists of a
one letter code; e.g., “J” refers to anti-infective agents. The Drug
Bank number (DB number) was used as the standard nomenclature
for approved drugs.
The 245 targets along with their approved drugs were

organized into a chemogenomics matrix with rows, i, defined
by drugs (1150 in number) and columns, j, defined by targets
(245 in number). A 16 × 8 subsection of the matrix is shown in
Figure 3A. We represent the matrix elements by the symbol, Oij

dt,
where the superscript designation, dt, represents drug-target. These
matrix elements are set to either 1 or 0 depending on whether or
not the drug, i, has a Drug Bank documented interaction with the
protein target, j.
The importance of the matrix is that we can easily find drug

sets to represent a given target by selecting an appropriate
column of the matrix, scanning downward through the rows
and noting where the 1’s and 0’s are located. In addition, we
can find the targets associated with a given drug by selecting
an appropriate row of the matrix, scanning horizontally across
the columns, and noting where the 1’s and 0’s are located. The
chemogenomics database is composed of the chemogenomics
matrix, as shown in Figure 3A, and a structural data file con-
taining the drug structures and associated data.
2.2. Validation Study Using DUD. DUD is one of the

most commonly used data sets for the analysis and validation of
structure-based and ligand-based virtual screening methods. It
contains approximately 3000 active ligands29 distributed across
40 protein targets. For every active ligand, 36 inactive “decoy”
molecules were selected that are physically and chemically similar
but topologically distinct from the active ligands. This approach
to selecting decoys avoids the bias in screening efficiency that
arises due to dissimilarity in physical properties between active
and inactive compounds present in the same database. Since we

wanted to use approved drugs as target representatives, we
chose 30 targets in the DUD data set that have at least one
approved drug molecule. The approved drug molecules for
each target (target representatives) were obtained from our
chemogenomics database. A screening database was created
by seeding the DUD actives into the decoys for each of the 30
targets, and the ability of target representatives to discern active
from decoy compounds was analyzed. In a second study, the
DUD actives were mixed with the entire decoy set (cross
decoys), and the ability of the target representatives to discern
active from decoy compounds was analyzed for each respective
target.
Multiple conformations of the target representatives were

generated by using OMEGA (Open Eye Scientific Software)34

with the following parameters: number of allowed conforma-
tions (nconfs) = 400, root-mean-square distance (RMS) = 0.5 Å,
and Ewindow = 10 kcal/mol. Ewindow is the value used to
discard high-energy conformations. The Merck Molecular Force
Field (MMFF) was used. The maximum allowed conforma-
tions per compound was set to 400 to ensure complete con-
formational coverage. The same OMEGA parameters were used
to generate a single (nconfs = 1) low-energy conformation of
DUD active molecules and decoys.
The ROCS program (OpenEye Scientific Software)35 was

used to carry out the virtual screens between the DUD
screening databases and the target representatives. The ROCS
run was carried out with the following parameters: rankby =
combo and besthits = 1. In this screen, ROCS compares
database compounds and target representatives by aligning the
compounds such that their volumes and chemical features are
as closely matched as possible. This match is represented by a
combo score which ranges from 0 to 2. If the combo score is
close to 2, then the molecules have an excellent shape and
chemical-feature match. On the other hand, values close to 0
imply a poor shape and chemical-feature match. The screening
score for a particular database compound was set to the maximum
combo score between the database compound and any of the
target representatives. The use of the maximum combo score is
consistent with group fusion ideas36−38 that utilize the MAX
fusion rule. MAX fusion is an extreme case, where all of the data
are thrown out and only the maximum value is retained.
An overview of steps used in this validation study is shown

in Figure 4. For example, in the case of COX-2, there are 408

Figure 2. Number of targets based on the number of approved drugs per target.
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active molecules and 13 289 decoys in DUD. The total of 13
697 molecules was used as the query set for the first screen-
ing run, i.e., DUD target-focused decoy screens. Thirty-six
approved drugs, which are known to interact with COX-2, were
extracted from our chemogenomics database and were used as
target representatives. The query set (i.e., 13 697 molecules)
was used to screen the target representatives. The similarity of
each molecule in the query set to every molecule in the target
representative set was calculated, and the maximum combo
score was selected. Each DUD query molecule will now have an
associated maximum combo score that gives the similarity between
the DUD query molecule and the target representative set.

The resulting file was sorted according to combo score. A receiver-
operating characteristic (ROC) plot was generated, and the AUC was
computed. Similar computations were carried out for all 30 targets
using DUD target-focused decoys and cross decoys. Ideally, if the
target representatives are capable of identifying the actives, then
higher AUC values (close to one) are expected.

2.3. Generation of the Drug−Target Matrix. Figure 5
shows the workflow for the creation of a drug−target matrix. In
the first step, we constructed an 1150 × 245 chemogenomics
database as discussed in section 2.1. In the second step, we
constructed a 1150 × 1150 drug−drug similarity matrix. This
was done by using ROCS to align and generate combo scores

Figure 3. Chemogenomics matrix. Each drug in the matrix is annotated with its Drug Bank number, generic name, ATC code, and ATC subclass.
Each target in the matrix is annotated with Drug Bank target ID, target name, and target class based on biochemical classification and species
information. (A) Matrix entry values of 1 and 0 denote documented and unknown interactions, respectively, between the drug and protein. (B)
Drug-target matrix. The matrix elements, O′ij

dt, are maximum combo score values (see discussion in section 2.3). Matrix element values, O′ij
dt, close to

2 indicate a high likelihood of interaction between the drug, i, and target, j, whereas O′ij
dt values close to 0 indicate a small likelihood that the drug will

interact with the target. Abbreviations: DB number, Drug Bank number; ATC, anatomical therapeutic chemical classification; AMPC, AmpC
β-lactamase; RIBOS12, 30s ribosomal protein S12; PBP1A1B, penicillin-binding protein 1A/1B; DHODH, dihydroorotate dehydrogenase; HIVRT,
HIV reverse transcriptase; EBIOP28, ergosterol biosynthetic protein 28; 5HT3R, 5HT3 receptor; GABAALP, GABA receptor subunit alpha;
LGICR, ligand-gated ion channel receptor; bact, bacteria; vir, virus; h, humans.
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for each and every pair of drugs. Each target representative drug
molecule was conformationally expanded using OMEGA, and
the query drug molecule was prepared with the same param-
eters as those used for the DUD data set. When two drug
molecules, drug 1 and drug 2, were compared using ROCS, all
pairwise alignments and combo score values between the con-
formational sets of the two molecules were evaluated. The final
combo score between drug 1 and drug 2 was then set to the
maximum combo score generated from the set of pairwise
alignments. The drug−drug matrix is shown in step 2 of Figure 5,
where Oij

dd represents the maximum combo score between
drugs i and j, and the superscript designation, dd, represents
drug−drug.
In step 3, we combine the information from the chemo-

genomics database (step 1 in Figure 5) with the drug−drug
matrix (step 2 in Figure 5) to create a drug−target matrix (step 3
in Figure 5). We collected all of the known drugs, {i}j, for each
target, j, from the chemogenomics matrix by selecting an
appropriate column of the matrix, j, scanning downward
through the rows, i, and noting the set of row locations, {i}j,
with matrix elements, Oij

dt, equal to 1 (described in section 2.1).
For each drug−target pair, i and j, we evaluated the maximum
ROCS combo score between the drug, i, and the set of target
representatives, {i}j. We used this maximum combo score to
populate the drug−target matrix element values, O′ij

dt. Here, the
prime designation is added to differentiate the drug−target
matrix from the chemogenomics matrix. The off-target profile
of a drug, i, is simply the vector of matrix element values, O′ij

dt,
j = 1−N, where N is the number of protein targets (245).
Matrix element values, O′ij

dt, close to 2 indicate a high likelihood
of interaction between the drug, i, and target, j, whereas O′ij

dt

Figure 4. Validation study using Directory of useful Decoys (DUD).

Figure 5. Schematic representation of drug−target matrix develop-
ment. (1) The chemogenomics database lists all known approved
drugs for the targets. The matrix elements Oij

dt have a value of 1 (which
is marked in red color) if there is a known interaction between drug, i,
and target, j, and 0 (marked in green color) if there is no known
interaction. (2) Drug−drug matrix elements, Oij

dd, are generated from
pairwise combo scores of each drug i with all other drugs j from the
chemogenomics matrix. (3) Drug−target matrix elements, O′ij

dt, are
generated by combining the information from matrices in steps 1
and 2. For example, there is no known link between drug 1 and target
1 (see step 1). Drug 2 is the only known inhibitor of target 1. So, O1,2

dd

was used as a link between drug 1 and target 1. When more than one
known drug exists for a target, then the maximum combo score is
taken. For example, in the case of drug 2 and target 3, which has two
known drugs (drugs 1 and 3), the matrix element is given by O′2,3

dt =
Max(O2,1

dd ,O2,3
dd ).
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values close to 0 indicate a small likelihood that the drug will
interact with the target. A snapshot of the final version of the
drug−target matrix is shown in Figure 3B. Any row of the
matrix will give us the off-target profile of a drug. For the
comparison of the ROCS result to the 2D similarity approach,
we used the scitegic ECFP4 fingerprint in pipeline pilot.39,40 In
order to compare with the Similarity Ensemble Approach
(SEA), which is a well-known target fishing application, we
used the SEA search tool along with the ChEMBL database and
ECFP4 descriptors as options.41

2.4. External Test Set. In order to check the ability of the
approach to identify the off-targets of new molecules, we used
an external test set. Fourteen drug molecules were identified
from the literature, for each of which a new off-target has been
reported recently.16,17 We used this as an external test of mole-
cules to further validate the use of our ROCS Based Target
Fishing (RBTF) model. In order to facilitate the comparison
between ligands for a particular target, we converted the combo
scores to Z scores. As mentioned earlier, in our matrix, each
query drug molecule is represented as a row. The Z score is
calculated using the formula

=
− μ

σ
Z

X( )
ij

ij i

i

where Xij is the combo score for a drug i to target j, μi is the
mean of all combo scores for that query drug across 245 targets
in the row, and σi is the standard deviation of all combo scores
for that query drug across the row.

3. RESULTS AND DISCUSSION

We generated a chemogenomics matrix of known drug−target
interactions. This matrix is sparse because approved drug mole-
cules have documented interactions with only a few of the 245
primary targets. Of the 128 potential drug−protein interactions
shown in Figure 3A, there are only 7 documented activities.
There are two reasons for this as follows: (1) the drugs were
designed with a particular target in mind, thereby minimizing the
potential for off-target activity, and (2) the drugs were never tested
against the off-targets. In this work, we have used approved drug
molecules as the target representatives and ROCS as the similarity
method to fill in the blanks of this sparse matrix.
3.1. Validation Using the DUD Set. We first tested our

idea of using approved drug molecules as target representa-
tives using the DUD data set. The ability of chosen target
representatives from Drug Bank to retrieve the DUD actives
seeded into DUD decoys was studied for each target. Cross-
decoy screens were also performed where the screening
database was the set of DUD actives for a particular target
seeded into the entire DUD ligand set, which includes the
decoys for all of the other targets. The enrichment was analyzed
using the AUC values from ROC plots. The results from the
target-focused screen and cross-decoy screen are shown in
Table 1, and the ROC plots for all 30 targets are shown in
Figure 6. Our results show that the use of approved drug
molecules can retrieve active molecules from decoys in most of
the test case studies. If we consider AUC values greater than 0.8
as excellent, between 0.7 and 0.8 as good, between 0.6 and 0.7
as fair, between 0.5 and 0.6 as poor, and less than 0.5 as failed, then
our target-focused screening strategy produced good or better
enrichment for 20 of the 30 targets tested (67% success rate).
Cross-decoy screening gave a 77% success rate. This is reasonable

as target-focused decoys are more challenging cases for the retrieval
of actives from decoys.
Enrichment obtained from one target to the next varies

considerably and is highly dependent on the selection of target
representatives.24 For progesterone receptor (PR), we obtained
a target-focused AUC value of 0.92, whereas for enoyl ACP
reductase (InhA), we obtained a lower AUC value of 0.5. Figure 7
shows PR target representatives (top) and a representative set of
DUD actives (bottom) along with the combo score. All 12 target
representatives of PR contain a cyclopenta-phenanthrene ring
system. Yet, this set was able to identify diverse DUD actives with
different scaffolds such as dihydro-quinoline (ZINC03832321)
and chromeno[3,4-f ]quinoline (ZINC03831939). The combo

Table 1. Screening of Target-Focused and Cross Decoys of
DUD Using Approved Drugs As Target Representatives

targeta

no. of
approved
drugs

no. of DUD
active ligands

LBTF target-
focused screen

AUC
LBTF cross-
screen AUC

DHFR 9 407 0.99 0.99
NA 1 49 0.97 0.99
COX-2 36 408 0.97 0.98
HMGR 8 31 0.97 0.93
EGFR 4 458 0.96 0.99
thrombin 6 68 0.95 0.83
ACHE 14 101 0.93 0.96
PNP 2 30 0.93 0.98
PR 12 26 0.92 0.95
ACE 12 48 0.91 0.94
MR 4 15 0.88 0.92
TK 6 22 0.88 0.99
COX-1 29 18 0.84 0.94
HIV-PR 6 61 0.83 0.70
ADA 4 37 0.82 0.93
AR 10 73 0.81 0.92
GR 14 77 0.80 0.89
RXRa 3 20 0.76 0.82
PDE5 7 76 0.73 0.71
PDGFR 4 169 0.71 0.83
FXa 1 146 0.66 0.20
GPB 1 52 0.65 0.88
SRC 1 159 0.63 0.68
COMT 3 10 0.62 0.73
PPARg 4 82 0.62 0.21
HIV-RT 11 40 0.56 0.72
InhA 1 86 0.50 0.49
VEGFR2 2 78 0.49 0.56
ALR2 2 26 0.49 0.60
AmpC 2 21 0.40 0.56

aAbbreviations: DHFR, dihydrofolate reductase; NA, neuraminidase;
COX-2, cyclooxygenase-2; HMGR, hydroxymethylglutaryl-CoA re-
ductase; EGFR, epidermal growth factor receptor; ACHE, acetylcho-
linesterase; PNP, purine nucleoside phosphorylase; ACE, angiotensin-
converting enzyme; PR, progesterone receptor; MR, mineralocorticoid
receptor; TK, thymidine kinase; COX-1, cyclooxygenase-1; ADA,
adenosine deaminase; AR, androgen receptor; HIV-PR, HIV protease;
GR, glucocorticoid receptor; PDE5, phosphodiesterase 5; RXRa,
retinoic X receptor; PPARg, peroxisome proliferator activated receptor γ;
PDGFR, platelet derived growth factor receptor kinase; SRC, tyrosine
kinase SRC; COMT, catechol O-methyltransferase; HIV-RT, HIV
reverse transcriptase; GPB, glycogen phosphorylase β; FXa, Factor Xa;
InhA, enoyl ACP reductase; VEGFR2, vascular endothelial growth factor
receptor 2; ALR2, aldose reductase 2; AmpC, AmpC β-lactamase; AUC,
area under the curve.
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score between the target representative norethindrone and the
dihydro-quinoline derivative (ZINC03832321) is 1.30, whereas
the 2D similarity between these two molecules calculated using

ECFP4 fingerprint gives a Tanimoto value of 0.08. This high-
lights the fact that the 3D-overlap facilitates enrichment even for
compounds which are not found to be similar in 2D. In the case

Figure 6. ROC curves for 30 DUD targets using approved drug molecules of the respective targets as target representatives. Target abbreviations are
given in Table 1. Sensitivity is the fraction of truly active compounds selected from the virtual screening workflow, and 1-specificity is the fraction of
inactive compounds selected from the virtual screening workflow.

Figure 7. Structures of target representatives and representative DUD actives for PR and InhA. Abbreviations: PR, progesterone receptor; InhA,
enoyl ACP reductase.
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of InhA, the target representative, ethionamide, is a compact rigid
structure. On the other hand, the DUD actives for InhA are large
molecules with multiple rotatable bonds. These differences are
consistent with the low AUC value of 0.5 that we obtained for
InhA.
Most of the targets that produced lower enrichment in this

study have a lower number of available target representatives.
For example, the targets AmpC, ALR2, and VEGFR2 each
have only two target representatives (Table 1) and achieved
AUC values of 0.40, 0.49, and 0.49, respectively. Our con-
clusion from these studies is that the use of approved drugs as
target representatives is reasonable with a 67% success rate of
retrieving DUD actives. However, the specific examples
outlined also underscore the limitations of our approach. In
order for the LBTF method to be successful, there must be
some similarity between the drugs used to represent the
target and the active compounds that are sought. Although
ROCS has been shown to be successful in scaffold
hopping,22 it is not expected to identify completely different
scaffolds as exemplified in the case of InhA. Enrichment
depends solely on how well the target-ligand set overlaps
with the actives to be found in the database. If the target is
only represented by one or two ligands, then the probability
of nonoverlap with active compounds in the database may
increase. Overall, this experiment validates our target fishing
approach, demonstrating that it is possible to predict the
activity of an unknown compound against a protein target by
evaluating its similarity to drugs that have a documented
protein target activity.
3.2. Generation of the Drug−Target Matrix. We have

identified 245 primary drug targets which can be arranged
into 13 classes. For each target, 1150 drugs were collected
and classified using ATC codes. The drug target, histamine
H1 receptor, was annotated with the highest number of
approved drug molecules (64) in our list, followed by
muscarinic M1 and dopaminergic D1 receptors, which were
found to interact with 49 approved drug molecules. There
are 208 targets in our list which have three or more drug
molecules that are known to interact with them. The
workflow for generating the final drug−target matrix is
shown in Figure 5. A snapshot of a small subsection of the
matrix is shown in Figure 3B, and the full drug−target matrix
between 1150 drugs and 245 targets is shown in Figure 8.
The red and yellow regions are the signals or alerts for
potential off-target interactions in this matrix.
The value of the matrix elements of the drug−target

matrix, ranging from 0 to 2, represents the likelihood of
interaction between the drug and the target. The success of
our DUD validation study supports this observation. In
addition, the drug−target matrix is dense; i.e., every drug has
a computed interaction value with every protein target. By
contrast, the chemogenomics database (Figure 3A and
Figure 5, part 1) derived from Drug Bank is sparse because
the matrix is limited to reported interactions between drugs
and proteins. As such, the drug−target matrix extends our
ability to study drug−protein relationships beyond those
documented in the literature or in public sources such as
Drug Bank.
A quick visual analysis of the drug−target matrix pro-

vides many insights (Figure 8). For example, the anti-infective
agents (marked by ATC code J) show the least off-target
effects because these drugs were mainly designed to target
bacterial proteins essential for survival in human hosts. Column 1

(Figure 8) is composed of pathogen targets. Most notably, the
population of red matrix elements for the anti-infective agents

in column 1 is much higher than for any other column (target
class) of the matrix. In contrast to anti-infectives, the drugs acting
on central nervous system targets (grouped by ATC code N) show
many off-target alerts. This category of drugs includes many GPCR
ligands. Our drug−target matrix agrees with a previous study
demonstrating that GPCR ligands produce the most pro-
miscuous polypharmacology-based profiles.37

A closer analysis of specific compounds highlights the
potential of this matrix. For example, rimantadine is an antiviral
compound, but it is also predicted to have interaction with
N-methyl-D-aspartate (NMDA) 3A receptor. Interestingly, our
preliminary analysis of the literature shows that rimantadine is
an NMDA antagonist and has been reported to be of benefit to
patients with Parkinson’s disease.42 We further analyzed
whether this can be identified by simple 2D-similarity analysis.
The chemogenomics database allows us to quickly retrieve
the target representative molecule. The off-target flag was

Figure 8. Drug−target matrix (1150 drugs × 245 targets) generated
using the RBTF approach. Color coding: Red reflects regions with
combo scores of 1.4 to 2.0 and represents potential off-target
interactions. Yellow shows borderline cases of off-target interaction
with combo scores of 1.2 to 1.4. Green reflects regions with combo
scores below 1.2. We do not expect drug−protein interactions in green
regions. J and N are ATC codes which represent anti-infectives for
systemic use and drugs acting on the nervous system, respec-
tively. Columns are labeled on the basis of different classes of targets.
column 1, pathogen targets; column 2, ligand-gated ion channel
receptors; column 3, G-protein coupled receptors; column 4, nuclear
receptors; column 5, ion channels; column 6, transporters; column 7,
oxidoreductases; column 8, kinases; column 9, other transferases;
column 10, proteases; column 11, other enzymes; column 12, other
targets.
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generated on the basis of the 3D-similarity between
rimantadine and memantine with a combo score of 1.54. We
used ECFP4 fingerprints39,40 for all 2D-similarity analysis. The
2D-similaritiy between these two compounds gives a Tanimoto
value of 0.23. SEA is considered to be a standard 2D-based off-
target prediction program.17 In addition to 2D-similarity
calculation, it gives an expectation value based on a statistical
scoring scheme.17 When analyzed with the SEA search tool, it
did not give any predicted off-targets for rimantadine. This
shows an example where a potential off-target of a compound
could be missed if we look at the 2D-similarity alone. In
addition to NMDA receptors, our RBTF predicts that
rimantadine has potential off-target interactions with targets
like adrenergic receptors, muscarinic receptors, serotonin
transporter, and acetycholinesterase. Further study on this
drug against these new off-targets will help us to understand
its neuropharmacological properties.
Chlorphenesin is a centrally acting muscle relaxant with

antibacterial properties. On the basis of the 3D-similaritiy with
dyphylline (combo score = 1.64), RBTF predicts phospho-
diesterase-4A (PDE4A) as a potential off-target for this
molecule. These two compounds share a lower 2D similarity
with a Tanimoto value of 0.19. The predicted off-target effect is
in agreement with a previous report.43 Celecoxib is a well-known
cyclooxygenase-2 (COX-2) inhibitor. RBTF predicts a potential
interaction with carbonic anhydrase (CA) based on the 3D-
similarity with brinzolamide, a known CA inhibitor. The combo
score between these two molecules is 1.26. Literature evidence
shows the CA inhibitory activity of celecoxib.44 The 2D-
similarity between these two molecules has a Tanimoto value
of 0.12.
Finally, desloratadine is an antihistaminergic compound which

is predicted to interact with muscarinic (M1) receptor.
Desloratadine and cyclizine share a higher 3D-similarity with a
combo score of 1.49, whereas the 2D Tanimoto between these
two compounds is 0.08. Desloratadine was reported to have
nanomolar affinity to the M1 receptor in vitro.45 Thus, most of
the compounds highlighted above have lower 2D-similarity, but
RBTF is able to correctly predict the off-targets based on the 3D-
similarity. These examples show that new insight can be obtained
from a 3D approach, and it also highlights the potential of the
3D approach to complement the 2D approaches. The structure
of these molecules along with similarity score is given in the
Supporting Information.
3.3. Validation Using External Test Set and Potential

Applications. 3.3.1. External Test set. Fourteen test
molecules were collected from the literature for which a new
off-target has been reported recently.16,17 We used this as an
external test of molecules to further validate our RBTF model. The
final form of the drug−target matrix generated for an example test
molecule (query) is shown in Figure 9. The combo scores were

converted into Z scores. We read across a row of the drug−
target matrix, for each of the 14 test molecules, to extract the
matrix values (Z scores) for each of the 245 primary targets.
The targets were then sorted into decreasing order by maxi-
mum Z score value. We then collected the identities of the
newly published off-targets for each test molecule and
determined their positions in the sorted target lists. Off-
targets that have the same score received the same ranking
number, and the next target received the next immediate
ranking number. The results of this calculation are shown in
Table 2. If a newly published target appeared within the top
5% (top 12) of the sorted target list for each test molecule,
then we deemed the RBTF protocol a success. Analysis of
Table 2 shows that the RBTF protocol was able to correctly
predict at least one of the newly identified off-targets for 10 of
14, or 71%, of the test molecules (molecules 1−8, 11 and 14).
For molecules 9, 12, and 13, the top off-targets were ranked
64, 28, and 48, respectively. The reported off-target (5HT5A)
was not present in our target list for molecule 10. These
results are significant because some of the test molecules are
not present in our chemogenomics database (italicized drugs
in Table 2), and for those test molecules present, we were able
to predict interaction with protein targets that were not
previously documented (italicized proteins in column 3 of
Table 2). It should be noted that other targets which occur
within the top 5% of our list (not reported in the table) could
be potential off-targets and candidates for future testing. Some
examples are discussed below to highlight this point. The test
set molecules were not known, until recent experiments,16,17

to interact with these off-targets, and it is very gratifying to
note that our RBTF approach was able to identify most of
these unknown off-targets.
For example, dimetholizine (first molecule in Table 2) was

recently reported to have antihistaminergic and antihyperten-
sive action.17 However, this molecule was not present in Drug
Bank from which our chemogenomic database was derived. Our
RBTF approach (outlined in Figure 9) has correctly predicted
the recently identified off-targets α1A, α1B, α1D adrenergic
receptors, D2 dopamine receptor, and 5HT1A serotonergic
receptor (Table 2, column 5 and Figure 10A). Moreover, the
histamine H1 receptor (column 3 of Table 2) was also identified
as a potential target (with rank 6), which agrees with its well-
known antihistaminergic activity.
Fluanisone (Sedalande), another molecule in our test set,

was reported to be a neuroleptic.17 This molecule is also not
present in our chemogenomic database, and there are no
known targets assigned to it. Our RBTF protocol (Figure 9)
correctly predicted the recently identified off-targets α1A,
α1B, α1D adrenergic receptors, and the 5HT1D serotonergic
receptor (column 5 of Table 2). Dopamine D2 and 5HT2A
receptors (column 3 of Table 2) are well-known targets of
sedalande.46,47 D2 is ranked first in the off-target hit list
(column 4 of Table 2 and Figure 10B), and the 5-HT2A receptor
is ranked third.
Fluoxetine (Prozac) is another well-known drug in our list

which inhibits the serotonin transporter. This drug is present
in our chemogenomic database, but its association with the
recently identified off-target β1 adrenergic receptor was not.
In fact, the β1 adrenergic receptor is ranked fifth in our list.
A literature analysis shows that fluoxetine was known to have
a weak binding affinity for the norepinephrine transporter
(Ki = 1560 nM) and dopamine transporter (Ki = 6670 nM).48

Fluoxetine was also known to have histamine H1 receptor
Figure 9. The drug−target matrix generated for a test molecule
(shown as query 4). The workflow is similar to that shown in Figure 5.
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antagonist activity with an IC50 value of 1.9 μM.49 The
norepinephrine transporter and dopamine transporter were
ranked first, and the histamine H1 receptor was ranked third in
our off-target hit list for fluoxetine (Figure 10C). Furthermore,
hERG ranks seventh in our off-target hit list (not shown in
Table 2, but shown in Figure 10C), which is consistent with
previous work demonstrating that fluoxetine inhibits hERG
with an IC50 of 0.7 μM.50 Nine of the 14 drugs in the test set
were not in our database, and therefore they have no target
assignments. The nine compounds are as follows: fluanisone,
dimetholizine, indoramin, mebhydrolin, denopamine, DMtrypt-
amine, tetrabenazine, ifenprodil, and RO-25-6981 (Table 2).
Our RBTF approach was able to assign the correct targets in
eight of the nine cases. This also highlights the potential
application of RBTF in assigning targets to orphan compounds.
Orphan compounds are compounds with known pharmaco-
logical activity but with unknown macromolecular target.10

Fluanisone is only known as a neuroleptic, but by using RBTF,
we were able to assign potential targets or off-targets to it.
Indoramin’s known pharmacological action is as an adrenergic
blocker and antihypertensive. Adrenergic α1A and α1B
receptors were identified as potential targets with ranks three
and four, respectively. In the case of mebhydrolin, the recently
identified off-target 5HT5A receptor is not present in our list
of targets. However, RBTF was able to identify the histamine

H1 receptor as its target (rank 1; combo score = 1.62). The
off-target hit lists of other test set molecules are given in the
Supporting Information.

3.3.2. hERG Toxicity. One of the important applications
of developing the off-target profiles of drug molecules is
to understand potential toxicity due to interactions with
unwanted targets. The hERG potassium channel is a well-
known target which is implicated in cardiac toxicity.51 We
explored the potential of our RBTF protocol to predict the
interaction of drugs with hERG. There are 14 approved drugs in
our chemogenomics database which are known to interact
with hERG and which serve as target representatives. The 14
approved drugs served as target representatives, and the
overlap with the query molecule is given by combo score
with values between 0 and 2. We converted it into a Z score
as explained in the Methods section. RBTF predicts that
propranolol will interact with hERG, and a quick search of
the literature shows that propranolol inhibits hERG.52 In our
chemogenomics database (Figure 3), propranolol was not
associated with hERG activity, but we demonstrated via our
RBTF protocol that propranolol has hERG activity. Through
literature analysis, we were able to confirm the hERG interaction
for at least five drugs (shown in Table 3), which produced an alert
in our RBTF screen.50,53

Table 2. Prediction of Off-Targets for Test Molecules Using the RBTF Approach

no. druga known action/targetb,c RBTF rank off-targets (recently identified) RBTF rank

1 dimetholizine antihistamine (H1 histamine receptor) 4 D2 (Ki = 180 nM) 1
α1A (Ki = 1.2 nM) 2
α1B (Ki = 14 nM) 2
α1D (Ki = 7 nM) 2
5HT1A (Ki = 140 nM) 4

2 f luanisone neuroleptic (D2) 1 α1A (Ki = 1.2 nM) 2
α1B (Ki = 14 nM) 2

5HT2A 3 α1D (Ki = 7 nM) 2
5HT1D (Ki = 140 nM) 6

3 indoramin adrenergic receptor (α1A receptor) 3 D4 (Ki = 18 nM) 3
4 paroxetine SERT 1 β1 antagonist (Ki = 1000 nM) 3
5 methadone μ opiod receptor 1 M3 antagonist (Ki = 1000 nM) 4
6 fluoxetine SERT 1 β1 antagonist (Ki = 4400 nM) 5

noradrenaline transporter 1
dopamine transporter 1
H1 histamine receptor 3

7 domperidone D2 1
hERG 1 α1B (Ki = 530 nM) 2

8 DM tryptamine serotonergic (5HT receptor) 2 5HT1B (Ki = 130 nM) 2
5HT7 (Ki = 210 nM) 6
5HT2A (Ki = 130 nM) 15

9 denopamine cardiotonic (β1 receptor) 2 β3 agonist (Ki = 2100 nM) 64
10 mebhydrolin Antihistamine (H1 Histamine receptor) 1 5HT5A (Ki = 130 nM) not listed
11 ifenprodil NMDAR 15 μ opioid (Ki = 1400 nM) 12
12 tetrabenazin VMAT2 1 α2A (Ki = 960 nM) 28

α2C (Ki = 1300 nM) 29
13 diphemanil M3 1 Δ opioid (Ki = 1400 nM) 48
14 RO-25-6981 NMDA 4 D4 (Ki = 120 nM) 6

SERT (Ki = 1400 nM) 18
noradrenaline transporter (Ki = 1300 nM) 18

aTest molecules which are not present in our database are italicized. bKnown targets with no previously identified interaction with the test molecule
are italicized. cAbbreviations: SERT, serotonin transporter; D2, dopamine receptor-2; α 1A receptor, α 1A adrenergic receptor; D4, dopamine
receptor-4; M3, muscarinic receptor M3; VMAT2, vesicular monoamine transporter-2; NMDA, NMDA receptor.
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4. CONCLUSION
Polypharmacology-based methods can augment modern drug-
discovery efforts in a range of applications, from the repurposing of
existing drugs toward new protein targets, to predicting side-effect
profiles for drug compounds, to designing novel drugs with lower
toxicity and higher efficacy. Generation of the polypharmacology-
based profile of drugs and new lead compounds is a challenging task.
In this study, we developed a novel approach to address this issue.

We generated a chemogenomic database that links known
target proteins and drugs. This allowed us to use approved drug
molecules as target representatives. We then used a 3D-shape and
chemistry-based similarity search to develop the off-target profile of
drugs. We validated this approach with the DUD data set using both
target-focused decoys and cross decoys. By using our RBTF protocol,
we were able to identify many off-targets of drugs which were
recently reported in the literature. Overall, this is a simple and fast
approach that demonstrates that a shape and chemical similarity-
based target fishing approach starting with a chemogenomic data-
base can successfully generate polypharmacology-based profiles. The
methodology has potential application in the prediction of toxicity,
identification of targets of orphan compounds, and drug repurposing.
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Three figures that show the off-target profile via RBTF for 11 test
set molecules and one figure that shows the 3D/2D similarity
of 4 molecules and respective target representative compound.

Table 3. Analysis of the Off-Target Profile of Approved
Drugs against hERG

combo scorea Z score

domperidone 1.42 3.15
droperidol 1.46 2.75
fluoxetine 1.39 1.45
atomoxetine 1.38 1.11
haloperidol 1.33 1.79
propronalol 1.49 2.20

aCombo score ranges from 0 to 2 and represents the volume and
chemical features overlap.

Figure 10. Off-target hits using RBTF for (A) dimetholizine, (B) Fluanisone, and (C) Fluoxetine. Abbreviations: ALPHA, α adrenergic receptor; D,
dopamine receptor; BETA, β adrenergic receptor; H1, histamine H1 receptor, 5HT, serotonin receptor; SERT, serotonin transporter; NADNAT,
sodium-dependent noradrenaline transporter; MU, μ opioid receptor; SA, serum albumin; AAGP1, alpha-1-acid glycoprotein 1; MDRP1, multidrug
resistance protein 1; HMGR, HMG-CoA reductase; PPARA, peroxisome proliferator-activated receptor α; PPARG, peroxisome proliferator-
activated receptor γ; NADOPT, sodium-dependent dopamine transporter; CALMOD, calmodulin; M, muscarinic receptor; A1, adenosine A1
receptor; HERG, hERG potassium ion channel; NACH5ALPHA, sodium channel protein type 5 subunit α.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci2003544 | J. Chem. Inf. Model. 2012, 52, 492−505503

http://pubs.acs.org/action/showImage?doi=10.1021/ci2003544&iName=master.img-011.jpg&w=410&h=381


This material is available free of charge via the Internet at http://
pubs.acs.org

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: mabdulhameed@bioanalysis.org; gtawa@bioanalysis.
org.

■ ACKNOWLEDGMENTS

Funding of this research was provided by the U.S. Department
of Defense Threat Reduction Agency Grant TMTI0004_
09_BH_T. The opinions or assertions contained herein are the
private views of the authors and are not to be construed as
official or as reflecting the views of the U.S. Army or of the U.S.
Department of Defense. This paper has been approved for
public release with unlimited distribution.

■ REFERENCES
(1) Merino, A.; Bronowska, A. K.; Jackson, D. B.; Cahill, D. J. Drug
profiling: knowing where it hits. Drug Discovery Today 15 (17−18),
749−756.
(2) Tsaioun, K.; Bottlaender, M.; Mabondzo, A. ADDME--Avoiding
Drug Development Mistakes Early: central nervous system drug
discovery perspective. BMC Neurol. 2009, 9 (Suppl 1), S1.
(3) Kola, I.; Landis, J. Can the pharmaceutical industry reduce
attrition rates? Nat. Rev. Drug Discovery 2004, 3 (8), 711−5.
(4) Schuster, D.; Laggner, C.; Langer, T. Why drugs fail--a study on
side effects in new chemical entities. Curr. Pharm. Des. 2005, 11 (27),
3545−59.
(5) Hopkins, A. L. Network pharmacology: the next paradigm in
drug discovery. Nat. Chem. Biol. 2008, 4 (11), 682−90.
(6) Ashburn, T. T.; Thor, K. B. Drug repositioning: identifying and
developing new uses for existing drugs. Nat. Rev. Drug Discovery 2004,
3 (8), 673−83.
(7) Shoichet, B. K. Virtual screening of chemical libraries. Nature
2004, 432 (7019), 862−5.
(8) Rognan, D. Structure-Based Approaches to Target Fishing and
Ligand Profiling. Mol. Inf. 2010, 29 (3), 176−187.
(9) Loging, W.; Harland, L.; Williams-Jones, B. High-throughput
electronic biology: mining information for drug discovery. Nat. Rev.
Drug Discovery 2007, 6 (3), 220−30.
(10) Jenkins, J. L. B. A.; Davies, J. W. In silico target fishnig:
predicting biological targets from chemical structure. Drug Discovery
Today: Technol. 2006, 3 (4), 413−421.
(11) Chen, Y. Z.; Zhi, D. G. Ligand-protein inverse docking and its
potential use in the computer search of protein targets of a small
molecule. Proteins 2001, 43 (2), 217−26.
(12) Li, H.; Gao, Z.; Kang, L.; Zhang, H.; Yang, K.; Yu, K.; Luo, X.;
Zhu, W.; Chen, K.; Shen, J.; Wang, X.; Jiang, H. TarFisDock: a web
server for identifying drug targets with docking approach. Nucleic Acids
Res. 2006, 34 (Web Server issue), W219−24.
(13) Li, L.; Bum-Erdene, K.; Baenziger, P. H.; Rosen, J. J.; Hemmert,
J. R.; Nellis, J. A.; Pierce, M. E.; Meroueh, S. O., BioDrugScreen: a
computational drug design resource for ranking molecules docked to the
human proteome. Nucleic Acids Res. 38 (Database issue), D765−73.
(14) Yang, L.; Luo, H.; Chen, J.; Xing, Q.; He, L. SePreSA: a server for
the prediction of populations susceptible to serious adverse drug
reactions implementing the methodology of a chemical-protein
interactome. Nucleic Acids Res. 2009, 37 (Web Server issue), W406−12.
(15) Rai, B. K.; Tawa, G. J.; Katz, A. H.; Humblet, C., Modeling G
protein-coupled receptors for structure-based drug discovery using
low-frequency normal modes for refinement of homology models:
application to H3 antagonists. Proteins 78 (2), 457−73.
(16) Keiser, M. J.; Roth, B. L.; Armbruster, B. N.; Ernsberger, P.;
Irwin, J. J.; Shoichet, B. K. Relating protein pharmacology by ligand
chemistry. Nat. Biotechnol. 2007, 25 (2), 197−206.

(17) Keiser, M. J.; Setola, V.; Irwin, J. J.; Laggner, C.; Abbas, A. I.;
Hufeisen, S. J.; Jensen, N. H.; Kuijer, M. B.; Matos, R. C.; Tran, T. B.;
Whaley, R.; Glennon, R. A.; Hert, J.; Thomas, K. L.; Edwards, D. D.;
Shoichet, B. K.; Roth, B. L. Predicting new molecular targets for
known drugs. Nature 2009, 462 (7270), 175−81.
(18) Nettles, J. H.; Jenkins, J. L.; Bender, A.; Deng, Z.; Davies, J. W.;
Glick, M. Bridging chemical and biological space: ″target fishing″ using 2D
and 3D molecular descriptors. J. Med. Chem. 2006, 49 (23), 6802−10.
(19) Nidhi.; Glick, M.; Davies, J. W.; Jenkins, J. L. Prediction of
biological targets for compounds using multiple-category Bayesian
models trained on chemogenomics databases. J. Chem. Inf. Model.
2006, 46 (3), 1124−33.
(20) Mestres, J.; Martin-Couce, L.; Gregori-Puigjane, E.; Cases, M.;
Boyer, S. Ligand-based approach to in silico pharmacology: nuclear
receptor profiling. J. Chem. Inf. Model. 2006, 46 (6), 2725−36.
(21) Cleves, A. E.; Jain, A. N. Robust ligand-based modeling of the
biological targets of known drugs. J. Med. Chem. 2006, 49 (10), 2921−38.
(22) Rush, T. S. 3rd; Grant, J. A.; Mosyak, L.; Nicholls, A. A shape-
based 3-D scaffold hopping method and its application to a bacterial
protein-protein interaction. J. Med. Chem. 2005, 48 (5), 1489−95.
(23) Kirchmair, J.; Distinto, S.; Schuster, D.; Spitzer, G.; Langer, T.;
Wolber, G. Enhancing drug discovery through in silico screening:
strategies to increase true positives retrieval rates. Curr. Med. Chem.
2008, 15 (20), 2040−53.
(24) Tawa, G. J.; Baber, J. C.; Humblet, C. Computation of 3D
queries for ROCS based virtual screens. J. Comput.-Aided Mol. Des.
2009, 23 (12), 853−68.
(25) Gundersen, E.; Fan, K.; Haas, K.; Huryn, D.; Steven Jacobsen, J.;
Kreft, A.; Martone, R.; Mayer, S.; Sonnenberg-Reines, J.; Sun, S. C.;
Zhou, H. Molecular-modeling based design, synthesis, and activity of
substituted piperidines as gamma-secretase inhibitors. Bioorg. Med.
Chem. Lett. 2005, 15 (7), 1891−4.
(26) Vijayan, R. S.; Prabu, M.; Mascarenhas, N. M.; Ghoshal, N.
Hybrid Structure-Based Virtual Screening Protocol for the Identi-
fication of Novel BACE1 Inhibitors. J. Chem. Inf. Model. 2009 .
(27) Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.;
Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: a knowledgebase for
drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36
(Database issue), D901−6.
(28) Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa,
M. KEGG for representation and analysis of molecular networks
involving diseases and drugs. Nucleic Acids Res. 2010, 38 (Database
issue), D355−60.
(29) Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking sets for
molecular docking. J. Med. Chem. 2006, 49 (23), 6789−801.
(30) Imming, P.; Sinning, C.; Meyer, A. Drugs, their targets and the
nature and number of drug targets. Nat. Rev. Drug Discovery 2006,
5 (10), 821−34.
(31) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. How many
drug targets are there? Nat. Rev. Drug Discovery 2006, 5 (12), 993−6.
(32) Filter, 2.1.0; OpenEye Scientific Software: Santa Fe, NM, 2010.
(33) WHOCC - ATC/DDD Index. http://www.whocc.no/atc_ddd_
index/ (accessed Dec. 22, 2010).
(34) OMEGA, 2.4.1; OpenEye Scientific Software: Santa Fe, NM,
2010.
(35) ROCS, 3.0.0; OpenEye Scientific Software: Santa Fe, NM, 2009.
(36) Willett, P. Similarity-based virtual screening using 2D
fingerprints. Drug Discovery Today 2006, 11 (23−24), 1046−53.
(37) Gregori-Puigjane, E.; Mestres, J. A ligand-based approach to
mining the chemogenomic space of drugs. Comb. Chem. High
Throughput Screen. 2008, 11 (8), 669−76.
(38) Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby,
E.; Schuffenhauer, A. Comparison of fingerprint-based methods for
virtual screening using multiple bioactive reference structures. J. Chem.
Inf. Comput. Sci. 2004, 44 (3), 1177−85.
(39) Hassan, M.; Brown, R. D.; Varma-O’brien, S.; Rogers, D.
Cheminformatics analysis and learning in a data pipelining environ-
ment. Mol. Divers. 2006, 10 (3), 283−99.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci2003544 | J. Chem. Inf. Model. 2012, 52, 492−505504

http://pubs.acs.org
http://pubs.acs.org
mailto:mabdulhameed@bioanalysis.org
mailto:gtawa@bioanalysis.org
mailto:gtawa@bioanalysis.org
http://www.whocc.no/atc_ddd_index/
http://www.whocc.no/atc_ddd_index/


(40) Morgan, H. L. The generation of a unique machine description
for chemical structures-A technique developed at chemical sbstracts
service. J. Chem. Doc. 1965, 5, 107−112.
(41) SEArch. http://sea.bkslab.org/search/ (accessed Nov. 13,
2011).
(42) Singer, C.; Papapetropoulos, S.; Gonzalez, M. A.; Roberts, E. L.;
Lieberman, A. Rimantadine in Parkinson’s disease patients experienc-
ing peripheral adverse effects from amantadine: report of a case series.
Mov. Disord. 2005, 20 (7), 873−7.
(43) Edelson, J.; McMullen, J. P. Interactions of chlorphenesin and
divalent metal ions with phosphodiesterase. Arch. Int. Pharmacodyn.
Ther. 1976, 223 (1), 24−33.
(44) Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C. T.;
Scozzafava, A.; Klebe, G. Unexpected nanomolar inhibition of carbonic
anhydrase by COX-2-selective celecoxib: new pharmacological
opportunities due to related binding site recognition. J. Med. Chem.
2004, 47 (3), 550−7.
(45) Cardelus, I.; Anton, F.; Beleta, J.; Palacios, J. M. Anticholinergic
effects of desloratadine, the major metabolite of loratadine, in rabbit
and guinea-pig iris smooth muscle. Eur. J. Pharmacol. 1999, 374 (2),
249−54.
(46) van Wijngaarden, I.; Kruse, C. G.; van Hes, R.; van der Heyden,
J. A.; Tulp, M. T. 2-Phenylpyrroles as conformationally restricted
benzamide analogues. A new class of potential antipsychotics. 1.
J. Med. Chem. 1987, 30 (11), 2099−104.
(47) van Luijtelaar, E. L.; Drinkenburg, W. H.; van Rijn, C. M.;
Coenen, A. M. Rat models of genetic absence epilepsy: what do EEG
spike-wave discharges tell us about drug effects? Methods Find Exp.
Clin. Pharmacol. 2002, 24 (SupplD), 65−70.
(48) Cashman, J. R.; Voelker, T.; Zhang, H. T.; O’Donnell, J. M.
Dual inhibitors of phosphodiesterase-4 and serotonin reuptake. J. Med.
Chem. 2009, 52 (6), 1530−9.
(49) Wong, D. T.; Bymaster, F. P.; Reid, L. R.; Threlkeld, P. G.
Fluoxetine and two other serotonin uptake inhibitors without affinity
for neuronal receptors. Biochem. Pharmacol. 1983, 32 (7), 1287−93.
(50) Staudacher, I.; Schweizer, P. A.; Katus, H. A.; Thomas, D.
hERG: protein trafficking and potential for therapy and drug side
effects. Curr. Opin. Drug Discovery Dev. 13 (1), 23−30.
(51) Sanguinetti, M. C.; Mitcheson, J. S. Predicting drug-hERG
channel interactions that cause acquired long QT syndrome. Trends
Pharmacol. Sci. 2005, 26 (3), 119−24.
(52) Yao, X.; McIntyre, M. S.; Lang, D. G.; Song, I. H.; Becherer,
J. D.; Hashim, M. A. Propranolol inhibits the human ether-a-go-go-
related gene potassium channels. Eur. J. Pharmacol. 2005, 519 (3),
208−11.
(53) Cavalli, A.; Poluzzi, E.; De Ponti, F.; Recanatini, M. Toward a
pharmacophore for drugs inducing the long QT syndrome: insights
from a CoMFA study of HERG K(+) channel blockers. J. Med. Chem.
2002, 45 (18), 3844−53.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci2003544 | J. Chem. Inf. Model. 2012, 52, 492−505505

http://sea.bkslab.org/search/

